• 제목/요약/키워드: Variable amplitude fatigue

검색결과 54건 처리시간 0.024초

단일과대하중이 피로균열성장에 미치는 영향에 관한 연구 (A Study on the Effect of a Single Overload on Fatigue Crack Retardation)

  • 김경수;김성찬;심천식;박진영;이창환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.73-78
    • /
    • 2002
  • Ships and ocean structures are generally under random loading. Various type of variable-amplitude loading affects fatigue crack growth and fatigue life. However interaction effects due to irregularity of loading including random loading have not explained exactly and it is difficult to examined fatigue crack growth behaviour and fatigue life for this reason. Therefore in this paper crack growth tests with constant-amplitude loading including a single overload were conducted to measure plastic zone size near crack tip of DENT specimen. And the observed plastic zone sized were discussed in terms of crack growth rate. As a result of this the effect the plastic rue size due to the overload is examined on the effect on crack growth rate and, consequently, fatigue life.

  • PDF

변동하중에서 미소하중의 제거가 균열진전에 미치는 영향 (The Effect on Fatigue Crack Growth due to Omitting Low-amplitude Loads from Variable Amplitude Loading)

  • 심동석;이승호;김정규
    • 동력기계공학회지
    • /
    • 제8권4호
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests were conducted on 2124-T851 aluminum alloy specimens. Three test spectra were generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results were compared with the data obtained from the flight-simulation loading. The experimental results show that the ranges equal to or smaller than 5% of the maximum load do not contribute to crack growth behavior because these are below the initial stress intensity factor range. Omitting these from the flight-simulation loading, test time can be reduced by 54%. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decreased, and crack growth curve deviated from the crack growth data under the flight-simulation loading because loading cycles above fatigue fracture toughness were omitted.

  • PDF

Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams

  • Han, Qing-Hua;Wang, Yi-Hong;Xu, Jie;Xing, Ying
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.353-368
    • /
    • 2016
  • This paper extends our recent work on the fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete (RRFC) composite beams. A series of 16 fatigue push-out tests were conducted using a hydraulic servo testing machine. Three different recycled tyre rubber contents of concrete, 0%, 5% and 10%, were adopted as main variable parameters. Stress amplitudes and the diameters of studs were also taken into consideration in the tests. The results show that the fatigue lives of studs in 5% and 10% RRFC were 1.6 and 2.0 times greater of those in normal concrete, respectively. At the same time, the ultimate residual slips' values of stud increased in RRFC to highlight its better ductility. The average ultimate residual slip value of the studs was found to be equal to a quarter of studs' diameter. It had also been proved that stress amplitude was inversely proportional to the fatigue life of studs. Moreover, the fatigue lives of studs with large diameter were slightly shorter than those of smaller ones and using larger ones had the risk of tearing off the base metal. Finally, the comparison between test results and three national codes was discussed.

7075-T6Al 합금에 있어서 변동하중진폭 하에서의 피로균열성장거동 (Fatigue Crack Growth Behavior of 7075-T6Al Alloy under Simple Stepped Variable Amplitude Loading Conditions)

  • 신용승
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.80-88
    • /
    • 1997
  • An experimental investigation of the fatigue through crack growth behavior under simple stepped variable loading condition has been performed using Al7075-T651. Experiments were carried out by using cantilever bending type specimens, with chevron notches on a small electro-magnetic test machine. Tensile overloads have a retarding effect on the fatigue crack growth rates, therefore tensile overloads were used for the beneficial effect on the fatigue life. While in most cases compressive overloads have only a vanishing effect on crack growth rates, some experiments with single edge crack tension specimens reveal a marked growth retardation. The stress ratios used in this investigations varies from R=0.32 to 0.81, from R=0.04 to 0.76, from R=-0.15 to 0.73, and from R=-0.33 to 0.68 and the peak load for each case was not varied. The crack growth and crack closure were measured by Kikukawa's compliance method with a strain gauge mounted on the backside of each specimens. The results obtained are as follows. When the stepped variable load was applied, the smaller the stress ration was, the larger the delayed retardation of the crack growth rate was. The fatigue crack growh rate data obtained for through cracks were plotted well against the effective stress intensity factor range from 4.0 to 20.0MP{a^{SQRT}m}. It was found that the effective stress intensity factor range ratio was related well to the opening stress intensity factor, the maximum stress intensity factor, and crack length.

랜덤하중에서의 균열전파속도 추정법에 관한 연구 (A Prediction of Crack Propagation Rate under Random Loading)

  • 표동근;안태환
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF

A Methodology for Fatigue Reliability Assessment Considering Stress Range Distribution Truncation

  • Park, Jun Yong;Park, Yeun Chul;Kim, Ho-Kyung
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1242-1251
    • /
    • 2018
  • Not all loads contribute to fatigue crack propagation in the welded detail of steel bridges when they are subjected to variable amplitude loading. For fatigue assessment, therefore, non-contributing stress cycles should be truncated. However, stress range truncation is not considered during typical fatigue reliability assessment. When applying the first order reliability method, stress range truncation occurs mismatch between the expected number of cycles to failure and the number of cycles obtained at the time of evaluation, because the expected number of cycles only counts the stress cycles that contribute to fatigue crack growth. Herein, we introduce a calibration factor to coordinate the expected number of cycles to failure to the equivalent value which includes both contributing and non-contributing stress cycles. The effectiveness of stress range truncation and the proposed calibration factor was validated via case studies.

KS50N Rail 용접부의 피로균열 성장거동 (A Study for Fatigue Crack Propagation Behavior of KS50N Rail Steel under Welding Line)

  • 박제용;지용찬;김진성;정경희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.553-559
    • /
    • 1998
  • This thesis studied to evaluate the fatigue behavior and propagation of rail steel under welding line. Test of crack growth was performed by all member of rail under constant amplitude loading at the structures laboratory in Hongik University. The effect of the following parameters with initiated crack length on the bottom edge of rail were studied. Here, fracture mechanics mode is opening mode. and Testing Material is KS50N Rail. From analysis and experimented result on the three Point bending in the lab, This paper presented a effect of crack growth , shape and remaining service life. Further more, according to the variable crack length, variable section and the ratio of section the fatigue behavior and propagation were studied.

  • PDF

단일과대하중의 작용모드 변화가 피로균열의 전파거동에 미치는 영향 (Effects with the Variation of Single Overload mode on Propagation Behavior of Fatigue Crack)

  • 송삼홍;이정무;신승만;홍석표;서기정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1508-1512
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I and mixed-mode loading overloading afterwards. We examined the observed deformation aspects, the variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. Also the loading modes of variable and constant amplitude loads have influence on the retardation behavior of fatigue cracks.

  • PDF

단일과대하중하에서 피로균열진전지연거동 및 지연수명의 확률론적 해석 (A Stochastic Analysis for Crack Growth Retardation Behavior and Prediction of Retardation Cycle Under Single Overload)

  • 심동석;김정규
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1164-1172
    • /
    • 1999
  • In this study, to investigate the fatigue crack retardation behavior and the variability of retardation cycles, fatigue crack growth tests were conducted on 7075-T6 aluminum alloy under single tensile overload. A retardation coefficient, D was introduced to describe fatigue crack retardation behavior and a random variable, Z to describe the variability of fatigue crack growth. The retardation coefficient was separately formulated according to retardation behavior which is composed of delayed retardation part and retardation part. The random variable, Z was evaluated from experimental data which was obtained from fatigue crack growth tests under constant amplitude load. Using these variables, a probabilistic model was developed on the basis of the modified Forman's equation, and retardation behavior and cycles were predicted under certain overload condition. The predicted retardation curve well agrees with the trend of experimental crack retardation behavior. And this model well predicts the scatter of experimental retardation cycles.

7075-T735 Al 합금의 피로균열 진전속도와 정류거동에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate and Arrest Behavior in 7075-T735 Al Alloy)

  • 오세욱;강상훈;허정원;김태형
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.131-139
    • /
    • 1992
  • The understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading is very important for life prediction of the air travel structures. Particularly, the retardation and arrest behavior of fatigue crack propagation by single tension overloading is essential to the understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading. Numerous studies of the retardation behavior have been performed, however investigations of the arrest behavior have not been enough yet. As for the arrest behavior, Willenborg had reported that the overload shut-off ratio $[R_{so}=(K_{OL})/K_{max})_{crack arrest}]$ had been the material constant, but recently several investigators have reported that the overload shut-off ratio depends upon the stress ratio. In this study, authors have investigated the effect of stress ratio on the threshold overload shut-off ratio to generate arrest of fatigue crack growth in high tensile aluminum alloy 7075-T735 which have used in material for air travel structures, It has been $-0.4\leqqR\leqq0.4$ till now, the region of stress ratio investigated. The threshold overload shut-off ratio has decreased as stress ratio has increased in overall region of -$-0.4\leqqR\leqq0.4$ and the linearity has been seen in this material. Moreover, the experimental equation between $R_{so}$ and R has been made; The relation has been $R_{so}=-R+2.6$.

  • PDF