• Title/Summary/Keyword: Variable Wind Speed

Search Result 272, Processing Time 0.027 seconds

Mechanical Design of a 750 kW Direct-drive Wind Turbine Generator System (750kW급 풍력터빈발전기의 기계설계)

  • Sohn, Y. U.;Son, J. B.;Park, I. S.;Kim, Y. C.;Kim, K. R.;Chung, C. W.;Chun, Ch. H.;Ryu, J. Y.;Park, J, I.;Byun, C. J,;Kim, D. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.379-384
    • /
    • 2004
  • A prototype of 750 kW direct-drive wind turbine generator system, KBP-750D is under development in Korea. For the gearless, direct-drive prototype a synchronous generator with permanent magnets has been developed. The upwind 3-blade type machine employs variable speed and pitch control. The operating ranges of wind and rotor speed are 3 to 25 m/s and 9 to 25 rpm, respectively. The tip speed ratio of rotor blade is 7.5, designed for power coefficient 0.47, The blade pitch and torque are controlled with the predefined torque-speed curve according to the conditions of wind and public electric grid. This paper describes the outlines of primary components of KBP-750D.

  • PDF

HAZARD ANALYSIS OF TYPHOON-RELATED EXTERNAL EVENTS USING EXTREME VALUE THEORY

  • KIM, YOCHAN;JANG, SEUNG-CHEOL;LIM, TAE-JIN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.59-65
    • /
    • 2015
  • Background: After the Fukushima accident, the importance of hazard analysis for extreme external events was raised. Methods: To analyze typhoon-induced hazards, which are one of the significant disasters of East Asian countries, a statistical analysis using the extreme value theory, which is a method for estimating the annual exceedance frequency of a rare event, was conducted for an estimation of the occurrence intervals or hazard levels. For the four meteorological variables, maximum wind speed, instantaneous wind speed, hourly precipitation, and daily precipitation, the parameters of the predictive extreme value theory models were estimated. Results: The 100-year return levels for each variable were predicted using the developed models and compared with previously reported values. It was also found that there exist significant long-term climate changes of wind speed and precipitation. Conclusion: A fragility analysis should be conducted to ensure the safety levels of a nuclear power plant for high levels of wind speed and precipitation, which exceed the results of a previous analysis.

Fuzzy Modeling and Stability Analysis of Wind Power System with Doubly-fed Induction Generator (이중여자 유도발전기 기반 풍력발전 시스템의 퍼지 모델링 및 안정도 해석)

  • Kim, Jin-Kyu;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.56-61
    • /
    • 2012
  • This paper propose the robust stability algorithm for controlling a variable speed wind power system which based on doubly-fed induction generator (DFIG). The control object in the wind power system enables the rotor to rotate without any physical contact by using magnetic force. Generally, the system dynamics of the wind power system has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving these problems, we propose the fuzzy modelling and robust control algorithm for wind power system. The sufficient conditions for robust controller are obtained in terms of solutions to linear matrix inequalities (LMIs). Simulation results for wind power system based on DFIG are demonstrated to visualize the feasibility of the proposed method.

Realtime Compensation of PCC Voltage Variation by Injection of Required Reactive Power in a Grid Connected Variable Speed Wind Turbine (계통 연계형 가변속 풍력발전기의 무효전력 주입을 통한 PCC 전압 변동량 실시간 보상)

  • Im, Ji-Hoon;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.69-74
    • /
    • 2010
  • In a grid connected variable speed wind turbine, the PCC voltage and the wind power fluctuate as the wind velocity changed. And this voltage variation is changed due to location of PCC. This paper calculate the value of PCC voltage variation which is proportional to the product of the line impedance from the ideal generator to the PCC and the wind turbine output current. And to reduce this PCC voltage variation, this paper calculate the required reactive power analytically using the vector diagram method. Output reactive current is changed, if the reactive current is limited by inverter capacity or grid code have the margin of voltage variation. If the grid connected inverter is controlled by proposed algorithm, the PCC voltage variation is minimized though the wind turbine output change at random. To verify calculated voltage variation and required reactive power, this paper utilized Matlab and PSCAD/EMTDC simulation and real small wind turbine and power system in Sapsido, island in the Yellow Sea.

Advanced Control of a PWM Converter with a Variable-Speed Induction Generator

  • Ahmedt, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo;Tanaka, Toshihiko
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.97-108
    • /
    • 2007
  • This paper describes simple control structures for a vector controlled stand-alone induction generator (IG) for use under variable speeds. Different control principles, indirect vector control and deadbeat current control, are developed for a voltage source PWM converter and the three-phase variable speed squirrel-cage IG to regulate DC-link and generator voltages with a newly designed phase locked loop circuit. The required reactive power for the variable speed IG is supplied by means of a PWM converter and a capacitor bank to buildup the voltage of the IG without the need for a battery, to reduce the rating of the PWM converter while using only three sensors and to eliminate the harmonics generated by the PWM converter. These proposed schemes can be used efficiently for variable speed wind energy conversion systems. The measurements of the IG systems at various speeds and loads are given and show that these systems are capable of good AC and DC voltage regulation.

Induction Generator Using PWM Converter and Its Small-Scale Power Applications to Variable-Speed Renewable-Energy Generation

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper describes a simple control structure and power conditioning system for an indirect vector controlled stand-alone induction generator (IG) used to operate under variable speed. The required reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM converter size. The vector control structure for the variable speed IG power conditioning system compensates for changes in the electrical three-phase and DC loads while considering the magnetizing curve of the IG. The vector control structure is developed to regulate the DC link voltage of the PWM converter and the IG output voltage. The experimental and simulated performance results of the IG power conditioning system at various speeds and loads are given and show that this proposed scheme can be used efficiently for a variable speed, wind energy conversion system.

A Study on Variable Speed Limit Considering Wind Resistance on Off-Shore Bridge (해상교량의 풍하중을 고려한 제한 속도 도출 방안)

  • Lee, Seon-Ha;Kang, Hee-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.75-87
    • /
    • 2004
  • Along the seashore regions in Korea, though strong winds with very large strength are frequently witnessed, no system which can provide appropriate speed information for driving vehicle has been introduced. The driving against strong winds could be very dangerous because of the high possibility of accidents such as rollover and collision. These accidents usually resulted from driver's forced driving try even in difficult situation for steering vehicle, and sometimes overspeed without consideration of wind impact to the vehicles. To reduce accident caused by strong winds, it is important to inform drivers of appropriate driving speeds by perceiving strong winds. By setting up WIS at the main points where strong winds frequently appear and using the variable message sign(VMS) connected to the on-line whether information system, it tis possible to provide desired speed information, which can maintain vehicles' tractive force and maximum running resistance. The case study is conducted on the case of Mokpo-Big-Bridge, which is under construction at Mokpo city. The result show that in case the annual average direction of wind is South and the wind speed is over 8m/hr, the desired speed, which is required in order for vehicles running to South direction to maintain the marginal driving power, is 60km/hr. In addition, for the case of a typhoon such as Memi generated in 2003 year, if wind speed had been 18m/sec in Mokpo city at that time, the running resistance at the speed of 40km/hr is calculated as 1131N. This resistance can not be overcome at the 4th gear(1054N) level, therefore, the gear of vehicles should be reduced down to the 3rd level. In this case, the appropriate speed is 40km/h, and at this point the biggest difference between running resistance and tractive force is generated.

A Study on the Integrated Simulation and Condition Monitoring Scheme for a PMSG-Based Variable Speed Grid-Connected Wind Turbine System under Fault Conditions (PMSG 적용 가변속 계통연계형 풍력발전 시스템의 통합 시뮬레이션 및 스위치 개방고장 진단기법 연구)

  • Kim, Kyeong-Hwa;Song, Hwa-Chang;Choi, Byoung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.65-78
    • /
    • 2013
  • To analyze influences under open fault conditions in switching devices, an integrated simulation and condition monitoring scheme for a permanent magnet synchronous generator (PMSG) based variable speed grid-connected wind turbine system are presented. Among various faults in power electronics components, the open fault in switching devices may arise when the switches are destructed by an accidental over current, or a fuse for short protection is blown out. Under such a faulty condition, the grid-side inverter as well as the generator-side converter does not operate normally, producing an increase of current harmonics, and a reduction in output and efficiency. As an effective way for a condition monitoring of generation system by online basis without requiring any diagnostic apparatus, the estimation schemes for generated voltage, flux linkage, and stator resistance are proposed and the validity of the proposed scheme is proved through comparative simulations.

Technical Development Status and Market Prospects for High Altitude Wind Power Generation System (공중 풍력발전 기술개발 현황 및 시장전망)

  • Kang, Seung-Won;Gil, Doo-Song;Park, Dong-Su;Jung, Won-Seoup;Kim, Eui-Hwan
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.36-42
    • /
    • 2011
  • The wind speed at the altitude around 300 m is much higher and less variable than at the altitude around 80 m which is the same height of the MW class tower turbine's hub height. The wind power density is increased 0.37 W/$m^2$ per meter at the altitude around 6 to 7 km and 0.25 W/$m^2$ per meter at the altitude around 80 to 500 m. There are two types of power generation systems using lifting bodies. The one is that The generator is installed in the ground station and stretched into the lifting body through the tether. The other is that the generator is installed in the lifting body and stretched into the ground station through the tether. Many kinds of lifting bodies are also researched in the world, called kites, wings, single or twin aerostat, and so on. This article introduced the technical development status and the market prospects of the high altitude wind power generation system all over the world in detail.

Output Control Simulation of Variable Speed Wind Power System using Real Data (실제 데이터를 이용한 가변속 풍력발전시스템의 출력제어 시뮬레이션)

  • Han, Sang-Geun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1342-1344
    • /
    • 2002
  • Wind is a significant and valuable renewable energy resource. It is safe and abundant and can make an important contribution to future clean, sustainable and diversified electricity supplies. Unlike other sources of energy, wind does not pollute the atmosphere nor create any hazardous waste. In some countries wind energy is already competitive with fossil and nuclear power even without accounting for the environmental benefits of wind power. The cost of electricity from conventional power stations does not usually take full account of its environmental impact (acid rain, oil slick clean up, the effects of climate change, etc). In this paper, a transient phenomenon simulation method for Wind Power Generation System(WPGS) under real weather conditions has been proposed. The simulation method is expected to be able to analyze easily under various conditions with considering the sort of wind turbine, the capacity of system and the converter system. Wind turbine connected to the synchronous generator and power converter was simulated.

  • PDF