• Title/Summary/Keyword: Variable Valve Timing

Search Result 57, Processing Time 0.023 seconds

A Prediction Study on the SI engine Characteristics using the Variable Valve Timing (밸브개폐시기가변에 따른 엔진 특성의 예측에 관한 연구)

  • ;;Wu deyu;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.48-55
    • /
    • 1999
  • In this paper, a zero-dimensional two zone model is developed to investigate the effects of variable valve timing on combustion process in SI engine. The simulation results show that the predicted data has good agreement with experimental ones. The useful information of combustion process such like residual gas fraction cylinder pressure, cylinder temperature and NO concentration can be obtained and the effects of engine variables on combustion processes and performances can be evaluated.

  • PDF

The Effects of Valve Timing Dual Equal Retard/Advance on Performance in an SOHC SI Engine (흡배기 밸브시기 동시 변경이 SOHC SI 엔진성능에 미치는 영향)

  • 엄인용;이원근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.30-36
    • /
    • 2003
  • Variable valve timing(VVT) mechanisms are used widely for improving fuel consumption and reducing emissions. Most of application, however, are limited in the DOHC engine. Dual equal retard/advance strategy is relatively simple one and can be applied to both SOHC and DOHC engines. In this study, effects of dual equal valve timing retard/advance are investigated to observe the feasibility of VVT system on an SOHC SI engine. The result shows that fuel economy and emissions are improved in the dual retard condition due to increased internal EGR. Some amount of increase in volumetric efficiency can be achieved by advancing valve timing at low speed and by retarding at high speed. In this case, however, full load power is not so much improved as the volumetric efficiency increases because of severe knock. In the dual advance condition, there is no merit in the fuel economy and emission.

A Linear Electromagnetic Motion Device for VVT in Combustion Engine (가변 밸브타이밍을 위한 신개념 전자기 리니어 엑츄에이터)

  • Kim, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.53-58
    • /
    • 2008
  • The traditional engine valve train in a combustion engine is the mechanically driven camshaft system that provides one-fixed valve timing. The variable valve timing (VVT), however, is highly required to achieve the significant improvement in fuel economy. To achieve VVT in combustion engine, the solenoid type of actuator had been developed in past years, but it requires current in all operation period, the starting is difficult and the efficiency is low. In this paper, a new linear actuator using permanent magnet (PM) is proposed and verified its feasibility by finite element (FE) analysis.

Effect of the Intake Valve Opening Timings and Fuel Injection Pressures on the Exhaust Emission Characteristics of a Gasoline Engine at Part Load Condition

  • Lee, Hyung-Min;Jeong, Yeon-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.317-322
    • /
    • 2011
  • This work has investigated the exhaust emissions such as Total Hydrocarbon (THC), Nitrogen Oxides(NOx), and Particulate Matter (PM) characteristics emitted from the tail-pipe of a continuously variable valve timing (CVVT) gasoline-fueled engine with different intake valve opening timings and injection pressures at the part load condition. Valve overlap period was varied from $40^{\circ}CA$ to $10^{\circ}CA$ and fuel injection pressure was increased from 3.5 bar to 5.0 bar. THC and NOx emissions decreased as intake valve opening timing was advanced regardless of fuel injection pressure. When the fuel was injected with the condition of 5.0 bar at all of valve overlap ranges, THC levels were reduced by 55%. NOx concentrations were diminished about 75% as valve overlap increased. PM size distributions were analyzed as bi-modal type of the nucleation and accumulation mode. Comparing with fuel injection pressures, PM emission levels were decreased at high pressure injection of 5.0 bar condition.

IDLE PERFORMANCE OF AN SI ENGINE WITH VARIATIONS IN ENGINE CONTROL PARAMETERS

  • Kim, D.S.;Cho, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.763-768
    • /
    • 2006
  • Emission reduction in the cold start period of SI engines is crucial to meet stringent emission regulations such as SULEV Emissoin reduction is the starting point of the study in the which the variable valve timing (VVT) technology may be one promising method to minimize cold start emissions while maintaining engine performance. This is because it is possible to change valve overlap and residual gas fraction during cold start and idle operations. Our previous study showed that spark timing is another important factor for reducing cold-start emissions since it affects warm-up time of close-coupled catalysts (CCC) by changing exhaust gas temperature. However, even though these factors may be favorable for reduction of emissions, they may deteriorate combustion stability in these operating conditions. This means that the two variables should be optimized for best exhaust emissions and engine stability. This study investigated the effects of valve and spark timings in idle performance such as combustion stability and exhaust emissions. Experiments showed that valve timings significantly affected engine stability and exhaust emissions, especially CO and $NO_x$, due to change in residual gas fraction within the combustion chamber. Spark timing also affects HC emissions and exhaust gas temperature. Yet it has no significant effects on combustion stability. A control strategy of proper valve timing and spark timing is suggested in order to achieve a reduction in exhaust emissions and a stable operation of the engine in a cold start and idle operation.

Analysis of Swirl Flow and Combustion Characteristics by Variable Valve's Operation of Cam-In-Cam System based on GT-Power Program (GT-Power기반 Cam-In-Cam 가변밸브작동에 따른 스월유동 및 연소특성 해석)

  • Lee, Y.M.;Jo, I.S.;Kim, J.H.;Park, S.W.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.58-65
    • /
    • 2018
  • An analytic strategy to control the variable valve actuation applied to two intake valves (flow port intake valve and swirl port intake valve) was performed in this study. we considered the variation in phasing of intake valve profiles by using the Cam-in-Cam technology. The analytic model was implemented in the GT-Power simulation program and analyzed the result of regulated emissions such as, NOx and Soot, especially with IMEP characteristics. Namely, we meticulously investigated the sources of having effect on the amount of NOx and soot formation under the test conditions with retard timing of both flow port and swirl port intake valves for decreasing the opening duration by 35CAD. Also, we analyzed the effect of incylinder pressure and temperature with NOx variations and in-cylinder pressure and temperature on NOx variations and normalized turbulent intensity. Through this analysis, some useful results on the combustion and flow characteristics of the swirl port and flow port control of the intake valve were obtained by this study.

THEORETICAL FLOW ANALYSIS AND EXPERIMENTAL STUDY ON TIME RESOLVED THC FORMATION WITH RESIDUAL GAS IN A DUAL CVVT ENGINE

  • Myung, C.L.;Kwak, H.;Hwang, I.G.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.697-704
    • /
    • 2007
  • Recently, a variable valve timing system has been widely adopted in internal combustion engine in order to improve the fuel economy and torque at low engine speed. In addition, it is known that varying valve timing according to the various engine operations could reduce exhaust gas, especially NOx, because of residual gas by valve overlap. In this study, to improve the low exhaust gas and fuel economy at part load condition, the residual gas and back flow of exhaust gas due to valve overlap were calculated computationally. Moreover, the characteristics of engine performances and NOx formations were investigated with the experiment of combination of intake and exhaust valve timing condition. Under these various valve operating conditions, the effects of both the positive valve overlap and negative valve overlap(valve underlap) were examined simultaneously. Finally, the characteristics of cyclic THC emission were analyzed by using Fast Response FID(FR-FID) in the cylinder, intake port and exhaust port positions. Besides, the effect of the different gradients of the valve timing change on engine performance was investigated and an optimum control strategy was suggested.

Knocking and Combustion Characteristics at Rich Limit of Gasoline HCCI Engine (가솔린 예혼합 압축 착화 엔진의 농후 한계에서 연소와 노킹 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.9-16
    • /
    • 2006
  • Variable valve timing is one of the attractive ways to control homogeneous charge compression ignition (HCCI) engine. Hot internal residual gas which can be controlled by variable valve timing(VVT) device, makes fuel evaporated easily, and ignition timing advanced. Regular gasoline was used as main fuel and di-methyl ether(DME) was used as ignition promoter in this research. HCCI engine operating range is limited by high combustion peak pressure and engine noise. High combustion pressure can damage the engine during operation. To avoid engine damage, the rich limits have to define using various methods. Peak combustion pressure, rate of cylinder pressure rise was considered to determine rich limit of engine operating range. Knock probability was correlated with the rate of cylinder pressure rise as well as the peak combustion pressure.

Sensitivity of Hot Film Flow Meter in Four Stroke Gasoline Engine

  • Lee, Gangyoung;Lee, Cha--Myung;Park, Simsoo;Youngjin Cho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.286-293
    • /
    • 2004
  • The air fuel ratios of current gasoline engines are almost controlled by several air flow meters. When CVVT (Continuous Variable Valve Timing) is applied to a gasoline engine for higher engine performance, the MAP (Manifold Absolute Pressure) sensor is difficult to follow the instantaneous air fuel ratio due to the valve timing effect. Therefore, a HFM (Hot Film Flow Meter) is widely used for measuring intake air flow in this case. However, the HFMs are incapable of indicating to reverse flow, the oscillation of intake air flow has an negative effect on the precision of the HFM. Consequently, the various duct configurations in front of the air flow sensor affect the precision of HFM sensitivity. This paper mainly focused on the analysis of the reverse flow, flow fluctuation in throttle upstream and the geometry of intake system which influence the HFM measurement.

Effects of Variable Valve Timing Operation Modes on Engine Performance (가변 밸브개폐시기 기구 운전의 엔진 성능에의 영향)

  • 구준모;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.24-29
    • /
    • 2001
  • Adaptive valve timing control is one of the promising techniques to accomplish the optimized mixture formation and combustion depending on the load and speed, which is needed to meet the future challenges in reducing fuel consumption and exhaust emissions. The behavior and the effect of adaptive valve timing control system has been investigated by computer simulation, which simulates the gas dynamics in engines. Improved fuel economy can be achieved by reduction of pumping loss under low and mid load conditions. EIVC(Early Intake Valve Closing) strategy turns out to be superior to LIVC(Late Intake Valve Closing) strategy in reducing fuel consumption. Deterioration of combustion quality can be overcome by introducing LIVO(Late Intake Valve Opening) strategy, which increases turbulent intensity in cylinders. Furthermore, LIVO can reduce HC emission by decreasing the required amount of fuel to be injected during cold start.

  • PDF