• Title/Summary/Keyword: Variable Thickness Plate

Search Result 134, Processing Time 0.071 seconds

Development of Bond Strength Model for FRP Plates Using Back-Propagation Algorithm (역전파 학습 알고리즘을 이용한 콘크리트와 부착된 FRP 판의 부착강도 모델 개발)

  • Park, Do-Kyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.133-144
    • /
    • 2006
  • In order to catch out such Bond Strength, the preceding researchers had ever examined the Bond Strength of FRP Plate through their experimentations by setting up of various fluent. However, since the experiment for research on such Bond Strength takes much of expenditure for equipment structure and time-consuming, also difficult to carry out, it is conducting limitedly. This Study purposes to develop the most suitable Artificial Neural Network Model by application of various Neural Network Model and Algorithm to the adhering experiment data of the preceding researchers. Output Layer of Artificial Neural Network Model, and Input Layer of Bond Strength were performed the learning by selection as the variable of the thickness, width, adhered length, the modulus of elasticity, tensile strength, and the compressive strength of concrete, tensile strength, width, respectively. The developed Artificial Neural Network Model has applied Back-Propagation, and its error was learnt to be converged within the range of 0.001. Besides, the process for generalization has dissolved the problem of Over-Fitting in the way of more generalized method by introduction of Bayesian Technique. The verification on the developed Model was executed by comparison with the resulted value of Bond Strength made by the other preceding researchers which was never been utilized to the learning as yet.

A Computer Simulation for Small Animal Iodine-125 SPECT Development (소동물 Iodine-125 SPECT 개발을 위한 컴퓨터 시뮬레이션)

  • Jung, Jin-Ho;Choi, Yong;Chung, Yong-Hyun;Song, Tae-Yong;Jeong, Myung-Hwan;Hong, Key-Jo;Min, Byung-Jun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.74-84
    • /
    • 2004
  • Purpose: Since I-125 emits low energy (27-35 keV) radiation, thinner crystal and collimator could be employed and, hence, it is favorable to obtain high quality images. The purpose of this study was to derive the optimized parameters of I-125 SPECT using a new simulation tool, GATE (Geant4 Application for Tomographic Emission). Materials and Methods: To validate the simulation method, gamma camera developed by Weisenberger et al. was modeled. Nal(T1) plate crystal was used and its thickness was determined by calculating detection efficiency. Spatial resolution and sensitivity curves were estimated by changing variable parameters for parallel-hole and pinhole collimator. Peformances of I-125 SPECT equipped with the optimal collimator were also estimated. Results: in the validation study, simulations were found to agree well with experimental measurements in spatial resolution (4%) and sensitivity (3%). In order to acquire 98% gamma ray detection efficiency, Nal(T1) thickness was determined to be 1 mm. Hole diameter (mm), length (mm) and shape were chosen to be 0.2:5:square and 0.5:10:hexagonal for high resolution (HR) and general purpose (GP) parallel-hole collimator, respectively. Hole diameter, channel height and acceptance angle of pinhole (PH) collimator were determined to be 0.25 mm, 0.1 mm and 90 degree. The spatial resolutions of reconstructed image of the I-125 SPECT employing HR:GP:PH were 1.2:1.7:0.8 mm. The sensitivities of HR:GP:PH were 39.7:71.9:5.5 cps/MBq. Conclusion: The optimal crystal and collimator parameters for I-125 Imaging were derived by simulation using GATE. The results indicate that excellent resolution and sensitivity imaging is feasible using I-125 SPECT.

Dose Alterations at the Distal Surface by Tissue Inhomogeneity in High Energy Photon Beam (조직 불균질성에 의한 고에너지 광자선의 선량변화)

  • Kim, Young-Ai;Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.13 no.3
    • /
    • pp.277-283
    • /
    • 1995
  • Purpose : This study was performed to measure dose alteration at the air-tissue interface resulting from rebuild-up to the loss of charged particle equilibrium in the tissues around the air-tissue interfaces. Materials and Methods : The 6 and 10-MV photon beam in dual energy linear accelerator were used to measure the surface dose at the air-tissue interface The polystyrene phantom sized $25{\times}25{\times}5\;cm^3$ and a water phantom sized $29{\times}29{\times}48\;cm^3$ which incorporates a parallel-plate ionization chamber in the distal side of air gap were used in this study. The treatment field sizes were $5{\times}5\;cm^2,\;10{\times}10\;cm^2\;and\;20{\times}20\;cm^2$. Air cavity thickness was variable from 10 mm to 50 mm. The observed-expected ratio (OER) was defined as the ratio of dose measured at the distal junction that is air-tissue interface to the dose measured at the same point in a homogeneous phantom. Results : In this experiment, the result of OER was close or slightly over than 1.0 for the large field size but much less (about 0.565) than 1.0 for the small field size in both photon energy. The factors to affect the dose distribution at the air-tissue interface were the field size, the thickness of air cavity. and the photon energy. Conclusion : Thus, the radiation oncologist should take into account dose reduction at the air-tissue interface when planning the head and neck cancer especially pharynx and laryngeal lesions, because the dose can be less nearly $29{\%}$ than predicted value.

  • PDF

Characteristics of Seafloor Morphology and Manganese Nodule Occurrence in the KODES area, NE Equatorial Pacific (태평양 한국심해환경연구(KODES) 지역 해저변 지형과 망간단괴 분포특성)

  • Jung, Hoi-Soo;Ko, Young-Tak;Chi, Sang-Bum;Kim, Hyun-Sub;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.323-337
    • /
    • 1999
  • Seafloor morphology and manganese nodule occurrence were studied in the Korea Deep-sea Environmental Study (KODES) area, northeast equatorial Pacific, to understand their relationship. Study area is composed of three elongated valleys and hills with about 100~200 m height along NNE-SSW direction. Valley region is generally flat. However, hill region is very rugged with big cliffs of about 100m height and small depressions of several tens of meters depth. Tectonic movement along the Clarion-Clipperton fracture zone, consequent formation of elongated abyssal hills and Valleys, erosion of siliceous bottom sediments by bottom currents, and dissolution of carbonate sediments on the abyssal hills below CCD result in the rugged morphology. Manganese nodule occurrence is closely related to the morphology of the study area; mostly rounded-shaped manganese nodules with about 5 cm diameter are abundant on the flat valley region, whereas irregular shaped nodules (or manganese crust) with less than 5 cm to about 1 m diameter occur on the hill. These results supports the previous reports that nodule abundance, composition, and morphology are variable both on regional and local small scales on the seafloor even within some abundant nodule provinces depending on oceanographic characteristics such as bathymetric features, surface sediment type, sediment thickness, and so on. We suggest that such oceanographic characteristics affect interrelatedly on the formation of manganese nodules, and tectonic movement of the Pacific plate ultimately constrain the nodule occurrence. A potential mining place in the KODES area seems to be the valley region, which is elongated to the NNW-SSE direction with 3-4 km width.

  • PDF