• Title/Summary/Keyword: Variable Flow

Search Result 1,298, Processing Time 0.029 seconds

A Study on the Dehumidification Control to Prevent Condensation for Radiant Floor Cooling (바닥복사냉방의 결로방지를 위한 제습제어에 관한 연구)

  • 김용이;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • In the forming of an integrated system of radiant floor cooling and dehumidifying, chilled coil can be used for cooling and dehumidification. Therefore, it is necessary to find the efficient control method which can eliminates latent load efficiently. This study has been conducted to find this method by dividing the dehumidification system into 3 types according to the control variables and analyzing characteristics of each system. To prevent the floor surface condensation, the amount of condensation can be manipulated by water temperatures, water flow rates in chilled coil, and air flow rates passing by it. So dehumidification system control can be divided into constant air flow control and variable air flow control. Regarding dehumidification control, variable air flow control, which eliminates latent load rather than sensible load, is preferable to constant flow control.

Fluid Dynamic Performance in a Hot-Water Heating System with a Variable-Flow-Rate Balancing Valve (가변유량 밸런싱밸브를 적용한 온수 난방시스템의 유체역학적 성능 평가)

  • Hur, Jurn;Lee, Suk- Jong;Sung, Jae-Yong;Lee, Myeong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.577-584
    • /
    • 2007
  • A variable-flow-rate balancing valve has been developed and optimized to apply to a distributor in a hot-water heating system. Fluid dynamic performance of the system was evaluated by comparing the results with the previous pressure difference control valve (PDCV) system. In view of the variations of pressure drop and flow rate according to the sequential closing of the control valves, the present system which is named "smart system distributor", is very stable without a certain flow rate concentration. The level of pressure drop variation is also low as compared with the previous system with a PDCV. In view of the occurrence of cavitation, the present system is quite superior to the previous system because the instantaneous pressures at all sections are much higher than the vapor pressure. On the other hand, the previous system has a possibility of cavitation when one or more control valves are closed.

Variable Free Surface Panel Method for Potential Flow Analysis around a Ship (가변 자유수면 패널법을 이용한 선체 주위 포텐셜 유동 해석)

  • Choi, Hee-Jong;Kim, Jin;Van, Suak-Ho;Park, Il-Ryong;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.54-62
    • /
    • 2008
  • A new solution method was developed to solve the free surface flow around a hull and named as 'Variable Free Surface Panel Method'. In the method the non-linearity of the free surface boundary conditions was fully taken into account and the raised panel method was employed to effectively solve the problem. The transom stern flow was also considered and the panel on the hull was generated using the panel cutting method. Numerical calculations were performed for KCS(KRISO Container Ship) hull form and compared with the experimental data to confirm the validity of the method. The comparison with the conventional free surface panel method was also accomplished. It is confirmed that new method gives more reliable results than the conventional method.

Performance Analysis of 10kW Class Propeller Hydro Turbine by the Change of Flow Rates and the Number of Runner Vane Using CFD (CFD를 이용한 10kW급 모델 실험용 프로펠러 수차의 유량 및 러너 베인 깃 수 변화에 따른 성능해석)

  • Park, Ji-Hoon;Kim, You-Taek;Cho, Yong;Kim, Byeong-Kon;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Small hydro power, among other renewable energy resources, has been evaluated to have enough development value because it is a clean, renewable and abundant energy resource. In addition, small hydro power has the advantage of low cost development by using existing facilities like sewage treatment plants, water works and similar resources. But in the case of small hydro power systems, there are problems with degraded operation efficiency of turbine due to changes in flow rates. In order to overcome this, variable speed control can be achieved by using the power rectifier and permanent magnetic synchronous generator(PMSG) as a possible method to respond to the changes in flow rates. In this study, a commercial ANSYS CFD code was used to analyze the performance of 10kW class propeller hydro turbine and to also investigate flow characteristics at variable flow rates and runner vane.

Analysis of Swirl Flow and Combustion Characteristics by Variable Valve's Operation of Cam-In-Cam System based on GT-Power Program (GT-Power기반 Cam-In-Cam 가변밸브작동에 따른 스월유동 및 연소특성 해석)

  • Lee, Y.M.;Jo, I.S.;Kim, J.H.;Park, S.W.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.58-65
    • /
    • 2018
  • An analytic strategy to control the variable valve actuation applied to two intake valves (flow port intake valve and swirl port intake valve) was performed in this study. we considered the variation in phasing of intake valve profiles by using the Cam-in-Cam technology. The analytic model was implemented in the GT-Power simulation program and analyzed the result of regulated emissions such as, NOx and Soot, especially with IMEP characteristics. Namely, we meticulously investigated the sources of having effect on the amount of NOx and soot formation under the test conditions with retard timing of both flow port and swirl port intake valves for decreasing the opening duration by 35CAD. Also, we analyzed the effect of incylinder pressure and temperature with NOx variations and in-cylinder pressure and temperature on NOx variations and normalized turbulent intensity. Through this analysis, some useful results on the combustion and flow characteristics of the swirl port and flow port control of the intake valve were obtained by this study.

Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat (변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석)

  • 전상명;장시열
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.297-306
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined within some degree of Journal misalignment. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of Journal bearing at high speed operation.

Design Study on a Variable Intake and a Variable Nozzle for Hypersonic Engines

  • Taguchi, Hideyuki;Futamura, Hisao;Shimodaira, Kazuo;Morimoto, Tetsuya;Kojima, Takayuki;Okai, Keiichi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.713-721
    • /
    • 2004
  • Variable air intake and variable exhaust nozzle of hypersonic engines are designed and tested in this study. Dimensions for variable geometry air intake, ram combustor and variable geometry exhaust nozzle are defined based on the requirements of a pre-cooled turbojet engine. Hypersonic Ramjet Engine is designed as a scaled test bed for each component. Actuation forces of moving parts for variable intake and variable nozzle are reduced by balancing the other force in the opposite direction. A demonstrator engine which includes variable intake and variable nozzle is designed and the components are fabricated. Composite material with silicone carbide is applied for high temperature parts under oxidation environment such as leading edge of the variable intake and combustor liner. Internal cooling structure is adopted for both moving and static parts of the variable nozzle. Pressure recovery and mass capture ratio of the variable intake at Mach 5 is obtained by a hypersonic wind tunnel test. Flow characteristics of the variable nozzle are obtained by a low temperature flow test. Wall temperature and heat flux of the nozzle at Mach 3 is obtained by a firing test. As results, the intake and the nozzle are proved to be used at designed pressure and temperature environment.

  • PDF

A study on application of aggregation method based on power flow matching technique and multi-variable control method to the power system (선로 조류 유지 기법에 근거한 계통축약 및 다변수 제어기법 적용 연구)

  • Lee, Byung-Ha;Oh, Min-Hyuk;Baek, Jung-Myoung
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.342-344
    • /
    • 2006
  • The modem enormous electric power system has made power system analysis much more complex and difficult. For effective analysis of the power system, model reduction and aggregation is required. In this paper, a new aggregation method is presented to aggregate the coherent generators in the large scale power system while matching the power flow. In order to demonstrate the effects of this aggregation method, it is applied to a small scale power system. A multi-variable control technique of $H_{\infty}$ control is also applied to enhance the dynamic stability of the aggregated power system.

  • PDF

Effect of variable viscosity on combined forced and free convection boundary-layer flow over a horizontal plate with blowing or suction

  • Mahmoud, Mostafa A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2007
  • The effects of variable viscosity, blowing or suction on mixed convection flow of a viscous incompressible fluid past a semi-infinite horizontal flat plate aligned parallel to a uniform free stream in the presence of the wall temperature distribution inversely proportional to the square root of the distance from the leading edge have been investigated. The equations governing the flow are transformed into a system of coupled non-linear ordinary differential equations by using similarity variables. The similarity equations have been solved numerically. The effect of the viscosity temperature parameter, the buoyancy parameter and the blowing or suction parameter on the velocity and temperature profiles as well as on the skin-friction coefficient and the Nusselt number are discussed.

  • PDF

A Study of Plastic Deformation Mechanisms in $Fe_3$Al Intermetallics Alloys by Inelastic Deformation Theory (비탄성 변형이론을 이용한 $Fe_3$Al 금속간화합물의 소성변형 기구 고찰)

  • 정호철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.180-183
    • /
    • 1999
  • It is well known that Fe3Al intermetallic compound shows an anomalous peak of the yield strength at about 50$0^{\circ}C$ and then decrease at higher temperatures The dislocation structure was examined by transmission electron microscopy and high temperatures. The dislocation structure was examined by transmission electron microscopy and high temperature mechanical properties were examined by tensile and load relaxation tests. The flow stress curves obtained from load relaxation tests were then analyzed in terms of internal variable deformation theory. it was found that the flow curves consisted of three micro-deformation mechanisms -i. e inelastic deformation mode plastic deformation mode and dislocation creep deformation mode depending on both dislocation structure and deformation temperature. The flow curves could be well described by the constitutive equations of these three micro-deformation mechanisms based on the internal variable deformation theory.

  • PDF