• Title/Summary/Keyword: Variable Capacitor

Search Result 141, Processing Time 0.021 seconds

Impedance Matching Characteristic Research Utilizing L-type Matching Network

  • Jun Gyu Ha;Bo Keun Kim;Dae Sik Junn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.64-71
    • /
    • 2023
  • If an impedance mismatch occurs between the source and load in a Radio Frequency transmission system, reflected power is generated. This results in incomplete power transmission and the generation of Reflected Power, which returns to the Radio Frequency generator. To minimize this Reflected Power, Impedance matching is performed. Fast and efficient Impedance matching, along with converging reflected power towards zero, is advantageous for achieving desired plasma characteristics in semiconductor processes. This paper explores Impedance matching by adjusting the Vacuum Variable Capacitor of an L-type Matching Module based on the trends observed in the voltage of the Phase Sensor and Electromotive Force voltage. After assessing the impedance matching characteristics, the findings are described.

  • PDF

An Isolated Power System Based on Variable Speed Engine Generator with Super-capacitor (슈퍼캐패시터와 가변속 엔진발전기를 이용한 독립형 전원 시스템)

  • Lee, Joon-Hwan;Lee, Seung-Hwan;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.15-17
    • /
    • 2007
  • The variable speed engine generator set is interested for an isolated power system due to reduced fuel consumption and less emission. However, because of sluggish dynamic behavior of the internal combustion engine the power quality would be degraded during the sudden load power surge, where the power required by the load is not available by the engine due to the reduced engine speed. An isolated power system based on variable speed engine with a super-capacitor bank improves dynamic characteristics under sudden load change, and power quality, fuel consumption, and pollutants can be reduced remarkably. Also, it is verified by the computer simulation that the inverter of 3phase-4leg is compatible to the isolated power system with unbalanced load. In this paper, the feasibility of the system has been verified based on a 26kw commercial diesel engine system.

  • PDF

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation -Part I : Theoretical Performance Analysis-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This paper deals with the nodal admittance approach steady-state frequency domain analysis of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover as the wind turbine. The steady-state performance analysis of this power conditioner designed for the renewable energy is based on the principle of equating the input mechanical power of the three-phase SEIG to the output mechanical power of the variable speed prime mover mentioned above. Us-ing the approximate frequency domain based equivalent circuit of the three-phase SEIG. The main features of the present algorithm of the steady-state performance analysis of the three-phase SEIG treated here are that the variable speed prime mover characteristics are included in the approximate equivalent circuit of the three-phase SEIG under the condition of the speed changes of the prime mover without complex computations processes. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by variable speed prime movers such as the wind turbine(WT) employing the static VAR compensator(SVC) circuit composed of the thyristor phase controlled reactor(TCR) and the thyristor switched capacitor(TSC) controlled by the PI controller is designed and considered for wind-turbine driving power conditioner.

An Isolated Power System Based on Variable Speed Engine Generator with Super-capacitor (슈퍼캐패시터와 가변속 엔진발전기를 이용한 독립형 전원 시스템)

  • Lee, Joon-Hwan;Lee, Seung-Hwan;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.128-134
    • /
    • 2008
  • The variable speed engine generator set is interested for an isolated power system due to reduced fuel consumption and less emission. However, because of sluggish dynamic behavior of the internal combustion engine the power quality would be degraded during the sudden load power surge, where the power required by the load is not available by the engine due to the reduced engine speed. An isolated power system based on variable speed engine with a super-capacitor bank can improve dynamic characteristics under such a sudden load change, and power quality, fuel consumption, and pollutants can be improved remarkably. Also, it is verified by the computer simulation that the inverter of 3phase-4leg is compatible to the isolated power system with unbalanced load. In this paper, the feasibility of the system has been verified based on a 26kw commercial diesel engine system.

A study on the Deformation of Variable Reactor / Capacitor for High-frequency Welder Due to the Change on the Velocity of Coolant (냉각수 유속 변화에 따른 고주파 용접기용 가변 리엑터 / 커패시터의 변형에 관한 연구)

  • Kook, Jeong-Han;Park, Gwang-Jin;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4288-4295
    • /
    • 2011
  • In this paper, variable reactor and capacitor for high-frequency welder are analyzed by optimum design. As the polar panel of high-frequency welder has the role of condenser, the material with the high rate of induced electricity has to be selected in order to manufacture the condenser with the great power cut. And the area of polar panel must be large and the gap between panels must be thin. On the contrary, the resistance is generated and the heat is happened because the large current is flown. To prevent the thermal deformation of this polar panel, the temperature can be lowered by using cooling water and so on. At this point, the speed of cooling water due to deformation and temperature of polar panel can be optimized.

A Study on the Design of Single-Phase Capacitor-Run Induction Motor (콘덴서형 단상 유도전동기의 설계에 관한 연구)

  • Kim, Bok-Ki;Park, Jun-Suk;Chung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.121-123
    • /
    • 1996
  • Capacitor-run motor has a capacitor id series with the auxiliary winding for normal running connections. After the shape of stator and rotor are determined, the motor is designed with variables such as winding distributions or capacitance except punching variables. In this paper, the winding distribution and the turn ratio was taken as design variables because the winding distribution affects the torque and efficiency. And capacitance was selected as an additional variable. Simulation results show the validity of proposed method.

  • PDF

Optimal Capacitor Placement Considering Voltage-stability Margin with Hybrid Particle Swarm Optimization

  • Kim, Tae-Gyun;Lee, Byong-Jun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.786-792
    • /
    • 2011
  • The present paper presents an optimal capacitor placement (OCP) algorithm for voltagestability enhancement. The OCP issue is represented using a mixed-integer problem and a highly nonlinear problem. The hybrid particle swarm optimization (HPSO) algorithm is proposed to solve the OCP problem. The HPSO algorithm combines the optimal power flow (OPF) with the primal-dual interior-point method (PDIPM) and ordinary PSO. It takes advantage of the global search ability of PSO and the very fast simulation running time of the OPF algorithm with PDIPM. In addition, OPF gives intelligence to PSO through the information provided by the dual variable of the OPF. Numerical results illustrate that the HPSO algorithm can improve the accuracy and reduce the simulation running time. Test results evaluated with the three-bus, New England 39-bus, and Korea Electric Power Corporation systems show the applicability of the proposed algorithm.

A study on a variable switching frequency for charging time control of CCPS (Capacitor charging power supply의 충전시간 제어를 위한 스위칭 주파수 가변성에 관한 연구)

  • Lee, Young-Duk;Kim, Soo-Hong;Kwon, Byung-Ki;Choi, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.154-156
    • /
    • 2008
  • 본 논문은 대용량 충 방전 커패시터 부하를 갖는 CCPS (Capacitor Charging Power Supply)의 충전시간 제어방법을 제안한다. 기존의 대용량 Capacitor charger들은 LC공진탱크 및 스위칭 주파수를 개 루프 방식으로 제어한다. 이와 같은 제어 방법은 LC 공진탱크의 파라미터 변화로 인해 충전시간 제어가 불가능하다. 본 논문은 이러한 문제점을 해결하기 위해 Zero-crossing 방법을 이용 전류의 공진주파수를 검출한 뒤 스위칭 주파수를 가변 함으로서 원하는 시간과 안정성을 동시에 만족 할 수 있는 피드백 제어 방법을 제안한다.

  • PDF

Experimental Investigation of Laser Spot Welding of Ni and Au-Sn-Ni Alloy

  • Lee, Dongkyoung
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • Many microelectronic devices are miniaturizing the capacitance density and the size of the capacitor. Along with this miniaturization of electronic circuits, tantalum (Ta) capacitors have been on the market due to its large demands worldwide and advantages such as high volumetric efficiency, low temperature coefficient of capacitance, high stability and reliability. During a tantalum capacitor manufacturing process, arc welding has been used to weld base frame and sub frame. This arc welding may have limitations since the downsizing of the weldment depends on the size of welding electrode and the contact time may prevent from improving productivity. Therefore, to solve these problems, this study applies laser spot welding to weld nickel (Ni) and Au-Sn-Ni alloy using CW IR fiber laser with lap joint geometry. All laser parameters are fixed and the only control variable is laser irradiance time. Four different shapes, such as no melting upper workpiece, asymmetric spherical-shaped weldment, symmetric weldment, and, excessive weldment, are observed. This shape may be due to different temperature distribution and flow pattern during the laser spot cutting.