• Title/Summary/Keyword: Vapor pressure of water

Search Result 422, Processing Time 0.023 seconds

Exploration of the teaching method for the prescription of the misconceptions on the Candle Experiment (촛불 실험과 관련된 오개념 교정을 위한 지도방안 탐색)

  • 전우수
    • Journal of Korean Elementary Science Education
    • /
    • v.18 no.2
    • /
    • pp.145-151
    • /
    • 1999
  • There is an experiment in the elementary science textbook which a burning candle hold upright in a water tank and a beaker is converted over the burning candle, the candle flame goes out and the water rises into the beaker. Some reference books including teachers' guide for the elementary school teachers explain the reason why water rises that oxygen is "used up", so water rises the same volume of consumed oxygen into the beaker. But this explanation is only partially correct. In this study, discrepancies of the explanation that oxygen is "used up" are analyzed. Water rises by two major reasons. One is that water can rise to the level about l/3 of the volume of consumed oxygen. The other is that the beaker is converted over the burning candle which produces hot CO2 and water vapor, and the candle's flame heats the air around it to expand, after the candle flame goes out, the air in the beaker cools and water vapor changes to liquid water, so, air pressure in the beaker is reduced, and the water is pushed into the beaker by great air pressure outside. 1 demonstrate a inquiry teaching method of the candle experiment.

  • PDF

Theoretical and Experimental Considerations of Thermal Humidity Characteristics

  • Choi, Seok-Weon;Cho, Ju-Hyeong;Seo, Hee-Jun;Lee, Sang-Seol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Thermal humidity characteristics were considered theoretically and experimentally. A Simply well-fitted correlation of a saturated vapor pressure-temperature curve of water was introduced based on Antoine equation to make theoretical prediction of relative humidity according to temperature variation. Characteristics of dew point were also examined theoretically and its relation with temperature and humidity was evaluated. The exact mass of water vapor in a specified humidity and temperature condition was estimated to provide useful insight into the idea about how much amount of water corresponds to a specified humidity and temperature condition in a confined system. A simple but well-fitting model of dehumidification process was introduced to anticipate the trend of relative humidity level during GN2(gaseous nitrogen) purge process in a humidity chamber. Well-suitedness of this model was also verified by comparison with experimental data. The overall appearance and specification of two thermal humidity chambers were introduced which were used to perform various thermal humidity tests in order to yield useful data necessary to support validity of theoretical models.

Stress corrosion index of Kumamoto andesite estimated from two types of testing method

  • Jeong Hae-Sik;Nara Yoshitaka;Obara Yuzo;Kaneko Katsuhiko
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.221-228
    • /
    • 2003
  • The stress corrosion index of Kumamoto andesite are evaluated by two types of testing method. One is the uniaxial compression test under various water vapor pressures, and the other is the double torsion (DT) test under a constant water vapor pressure. For the uniaxial compression tests, the uniaxial compressive strength increases linearly with decreasing water vapor pressure on the double logarithmic coordinates. As the results, the stress corrosion index obtained is estimated 44. On the other hand, in the DT test, the relaxation (RLX) test and the constant displacement rate (CDR) test were conducted. For the CDR test, as the displacement rate of loading point increases, the crack velocity increases. However, the fracture toughness is constant regardless of the change in displacement rate and the average fracture toughness is evaluated $2.07MN/m^{3/2}$. For the RLX test, the crack velocity-stress intensity factor curves are smooth and linear. The stress corrosion index estimated from the curves is 37. Comparing stress corrosion indexes in the uniaxial compression test and the DT test, there is no significant difference in these values, and they are considered to be in coincident each other regardless of testing methods. Therefore, it is concluded that stress corrosion is one of material constants of rock.

  • PDF

The Synthesis of One-step Type Hydrophilic Non-porous Polyurethane Resin and the Physical Property of its Coated Fabric for the Garment (One-step형 친수무공형 폴리우레탄 수지 합성과 코팅 처리한 의류용 직물의 물성)

  • Yang, Sung-Yong;Kim, Hyun-Ah;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 2011
  • This study surveyed on the synthesis of one-step type hydrophilic non-porous PU resin and the physical property of the coated fabric for the garment. Three kinds of chain extender such as MEG, 1,4-BD and NPG were used for the preparation of one-step type hydrophilic non-porous PU resin in order to examine the effect of chain extender on the physical properties of PU-coated fabric. And the effects of isocyanate on the physical properties of PU coated fabric were surveyed by mixing with various TDI and MDI ratios. In addition, the physical properties of the coated fabric treated with one-step type hydrophilic non-porous PU resin were examined according to the pre-treatment conditions such as cire finishing. Finally, the washing durability of the coated fabrics was assessed. The coated fabrics treated with PU resin synthesized with PEG1000, MEG and TDI/MDI (6/4) showed the best physical properties. Considering the pre-treatment conditions, best performance of hydraulic pressure, water vapor permeability, and water repellency were obtained with top roller rotation ratio of 150% under 50 ton pressure at $170^{\circ}C$.

Defect Structure and Electrical Conductivities of $SrCe_{0.95}Yb_{0.05}O_3$ ($SrCe_{0.95}Yb_{0.05}O_3$의 결함엄개와 전기전도 특성)

  • 최정식;이도권;유한일
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.271-279
    • /
    • 2000
  • 5 m/o Yb-doped SrCeO3 proton conductor was prepared by a solid state reaction method and its total electriccal conductivity measured as a function of both oxygen partial pressure and water vapor partial pressure in the temperature range of 500~100$0^{\circ}C$. From the total conductivity have been deconvoluted the partial conductivities of oxide ions, protons, and holes, respectively, on the basis of the defect model proposed. The equilibrium constant of hydrogen-dissolution reaction, proton concentration, and mobilities of oxygen vacancies and protons have subsequently been evaluated. It is verified that SrCe1-xYbxO3 is a mixed conductor of holes, protons and oxide ions and the proton conduction prevails as temperature decreases and water vapor pressure increases. The heat of water dissolution takes a representative value of $\Delta$HoH=-(140$\pm$20) kJ/mol-H2O, but tends to be less negative with increasing temperature. Migration enthalpies of proton and oxygen vacancy are extracted as 0.83$\pm$0.10 eV and 0.81$\pm$0.01 eV, respectively.

  • PDF

Estimation of Tropospheric Water Vapor using GPS Observation (GPS를 이용한 대류권의 수증기량 추정에 관한 연구)

  • 송동섭;윤홍식;조재명
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.215-222
    • /
    • 2002
  • As the GPS signals propagate from the GPS satellites to the receivers on the ground, they are delayed by the atmosphere. The tropospheric delay consists of two components. The hydrostatic (or "dry") component that is dependent on the dry air gasses in the atmosphere and accounts for approximately 90% of the delay. And the "wet" component that depends on the moisture content of the atmosphere and accounts for the remaining effect of the delay. The Zenith Hydrostatic Delay (ZHD) can be calculated from the local surface pressure. The Total Zenith Delay (TZD) will be estimated and the wet component extracted later. Integrated water Vapor (IWV) gives the total amount of water vapor that a signal from the zenith direction would encounter. Precipitable Water Vapor (PWV) is the IWV scaled by the density of water. The quality of this PWV has been verified by comparison with radiosonde data(at Osan). We processed data for JULY 2 and JULY 14, 1999 from four stations(Cheju, Kwangju, Suwon, Daegu). We found the coincidence between PWV of the estimations using GPS and PWV of pressing the radiosonde data. The average of the difference between PWV using GPS and PWV using radiosonde was 3.77 mm(Std. = $\pm$0.013 mm) and 2.70 mm(Std. = $\pm$0.0011 mm) at Suwon & Kwangju.

Effect of an Al underlayer on the Growth of mm-long Thin Multi-walled Carbon Nanotubes in Water-Assisted Thermal CVD

  • Choi, In-Sung;Jeon, Hong-Jun;Lee, Han-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.26-26
    • /
    • 2009
  • Vertically aligned arrays of mm-long multi-walled carbon nanotubes (MWCNTs) on Si substrates have been synthesized by water-assisted thermal chemical vapor deposition (CVD). The growth of CNTs was investigated by changing the experimental parameters such as growth temperature, growth time, gas composition, annealing time, catalyst thickness, and Al underlayer thickness. The 0.5-nm-thick Fe served as catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. We grew CNTs by adding a little amount of water vapor to enhance the activity and the lifetime of the catalyst. Al was very good at producing the nm-size catalyst particles by preventing "Ostwald ripening". The Al underlayer was varied over the range of 15~40 nm in thickness. The optimum conditions for the synthesis parameters were as follows: pressure of 95 torr, growth temperature of $815^{\circ}C$, growth for 30 min, 60 sccm Ar + 60 sccm $H_2$ + 20 sccm $C_2H_2$. The water vapor also had a great effect on the growth of CNTs. CNTs grew 5.03 mm long for 30 min with the water vapor added while CNTs were 1.73 mm long without water vapor at the same condition. As-grown CNTs were characterized by using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. High-resolution transmission electron microscopy showed that the as-grown CNTs were of ~3 graphitic walls and ~6.6 nm in diameter.

  • PDF

The Impact of the Dam Construction on the Fog Characteristics of Its Surrounding Area (대형 댐 건설이 주변 지역의 안개 특성에 미친 영향 - 주암댐과 충주댐을 사례로 -)

  • Lee, Seungho;Heo, Inhye
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.2
    • /
    • pp.109-120
    • /
    • 2003
  • This paper examined the impacts of dam construction on fog characteristics over surrounding areas. Juamdam which only supplies the water for use and Chungjudam which generates electricity were selected. The number of foggy days, fog occurrence and dissipation time and the differences of each lake water temperature and air temperature at Sunchun and Chungju were analyzed. After the construction of dam, the relative humidity and water vapor pressure were decreased at Sunchun and Chungju. The number of foggy days did not increase at Sunchun while largely increased at Chungju. Just because Juamdam were contained water, the water vapor pressure at surrounding areas of the weather station were largely decreased. It delayed the time of fog occurrence by bringing out the decrease of steam fog. The foggy days increased over the Chungju area due to the difference between air and cold outlet water temperature. The increase of foggy days mainly resulted from evaporation during colder seasons and from the temperature inversion over the water surface during warmer seasons.

Evaporation Heat Transfer and Pressure Drop Characteristics of Refrigerant R-22 in a P1ate and Shell Heat Exchanger (Plate and Shell 열교환기내의 R-22 증발열전달 및 압력강하 특성에 관한 실험적 연구)

  • Seo, Mu-Gyo;Park, Jae-Hong;Kim, Yeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1318-1326
    • /
    • 2001
  • The evaporation heat transfer coefficient and pressure drop for refrigerant R-22 flowing in the plate and shell heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were farmed in the exchanger by three plates of commercial geometry with a corrugated trapezoid shape of a chevron angel of 45 ° Upflow boiling of refrigerant R-22 in one channel receives heat from the hot downf1ow of water in the other channel. The effects of the mean vapor quality, mass flux, heat flux and pressure of R-22 on the evaporation heat transfer and pressure drop were explored. The quality change of R-22 between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.05. The present data showed that both the evaporation heat transfer coefficient and pressure drop increase with the vapor quality. At a higher mass flux, the evaporation heat transfer coefficient and pressure drop are higher for the entire range of the vapor quality Raising the imposed wall heat flux was found to slightly improve the heat transfer, while at a higher refrigerant pressure, both the heat transfer and pressure drop are slightly lower.

Water-Assisted Synthesis of Carbon Nanotubes at Low Temperature and Low Pressure (물을 첨가한 탄소나노튜브의 저온 저압 합성)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.395-395
    • /
    • 2008
  • Water-assisted synthesis of carbon nanotubes (CNTs) has been intensively studied in recent years, reporting that water vapor enhances the activity and lifetime of metal catalyst for the CNT growth. While most of these studies has been focused on the supergrowth of CNTs at high temperature, rarely has the similar approach been made for the CNT synthesis at low temperature. Since the metal catalyst are much less active at lower temperature, we expect that the addition of water vapor may increase the activity of catalyst more largely at lower temperature. We synthesized multi-walled CNTs at temperature as low as $360^{\circ}C$ by introducing water vapor during growth. The water addition caused CNTs to grow ~3 times faster. Moreover, the water-assisted growth prolonged the termination of CNT growth, implying the enhancement of catalyst lifetime. In general, a thinner catalyst layer is likely to produce smaller-diameter, longer CNTs. In a similar manner, the water vapor had a greater effect on the growth of CNTs for a smaller thickness of catalyst in this study. To figure out the role of process gases, CNTs were grown in the first stage and then exposed to each of process gases in the second stage. It was shown that water vapor and hydrogen did not etch CNTs while acetylene led to the additional growth of CNTs even faster in the second stage. As-grown CNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and Raman spectroscopy.

  • PDF