• Title/Summary/Keyword: Vapor pressure of water

Search Result 422, Processing Time 0.025 seconds

A study on the development of the high efficiency condensing heat exchanger (고효율 응축형 열교환기 개발에 관한 연구)

  • Lee, Geum-Bae;Park, Sang-Il;Park, Jun-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.589-601
    • /
    • 1997
  • A computer simulation program of a high efficiency condensing heat exchanger is developed. The flue gas flows outside bare tube bundles both in strong cross flow and in weak counter flow and the cooling water inside the tubes. Condensing heat exchangers achieve high efficiency by reducing flue-gas temperatures to a level at which most of the water vapor in the flue gas is condensed and the latent heat associated with phase change of the water is recovered. The computer model has been verified by comparison with measured data. To verify the model, heat transfer coefficient was adjusted, along with the mass transfer diffusion coefficient and pressure drop coefficient, to achieve agreement between predicted and measured data. The efficiencies of heat exchanger increase 2.3 ~ 8.1% by condensations of 6.3 ~ 62.6% of the water vapor in the flue gas.

Solubility, vapor pressure, duhring and enthalpy-concentration charts of$H_2$O/(LiBr+$CaC1_2$) solution as a new working fluid ($H_2$O/(LiBr+$CaC1_2$) 3성분계 작동매체의 용해도, 증기압측정 및 듀링 선도, 엔탈피-농도 선도 작성)

  • 이형래;구기갑;정시영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.666-673
    • /
    • 1998
  • Solubilities (LiBr+$CaC1_2$) in water were measured at temperatures form 267.51 to 306.17K for $CaC1_2$ (LiBr+$CaC1_2$)=0.24 by mole. Experimental data were correlated with polynomial equations. Average absolute deviations between the measured and calculated values were 0.31% at concentration smaller than 60wt% and 0.41% at concentration larger than 60wt%, respectively. Vapor pressures were measured at temperatures from 296.75 to 436.75K and concentrations from 40 to 70wt%. Vapor pressure data were fitted to a Antoine-type equation and average absolute deviation was 2.98%. The P-T-X chart and H-T-X chart of $H_2O$/(LiBr+$CaC1_2$) system were constructed by using the correlation equations of solubility, vaper pressure, and heat capacity. The P-T-X chart indicates that $H_2O$/(LiBr+$CaC1_2$) system has potential as a possible working fluid for air-cooled absorption chillers.

  • PDF

Effects of Vapor Injection on a Compressor in a Transcritical CO2 Cycle (초임계 CO2 사이클에서 가스 인젝션이 압축기 성능에 미치는 영향)

  • Kim, Woo-Young;Shim, Jae-Hwi;Lee, Yong-Ho;Kim, Hyun-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.16-21
    • /
    • 2007
  • Potential advantages of using vapor injection in a two stage rotary compressor for a $CO_2$ heat pump water heater system were addressed in this paper by numerical simulation. Vapor separated from a flash tank in the middle of the expansion process can be used for injection into the second stage suction plenum of the compressor to improve the system performance. Vapor injection increases the intermediate pressure between the two stages, thus increasing the first stage compressor work and reducing that of the second stage. As a whole, however, the compressor input power increases due to injected mass flow rate for the second stage. Computer simulation showed that increment of the cooling capacity by vapor injection exceeded that of the compressor work, thus improving the system performance. COP improvement by vapor injection was calculated to be about 5-14% for normal operating conditions. With vapor injection, a maximum COP was found when the displacement volume of the second stage becomes 90-95% of that of the first stage of the compressor.

Basic and Mechanical Properties by Film Type to Minimize the Sound Pressure Level of PTFE Laminated Vapor-permeable Water-repellent Fabrics (PTFE(Polytetrafluoroethylene) 라미네이팅 투습발수직물의 총음압 최소화를 위한 필름 타입 별 기본 특성과 역학 특성)

  • Lee, Kyu-Lin;Lee, Jee-Hyun;Jin, Eun-Jung;Yang, Youn-Jung;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.641-647
    • /
    • 2012
  • This study investigates the sound properties of fabric frictional sound (SPL, ${\Delta}L$, ${\Delta}f$) according to the film type of PTFE laminated vapor-permeable water-repellent fabrics in order to understand the relationship between SPL and the basic properties of fabrics such as layer, yarn type, and thickness of fiber. This study accesses their mechanical properties and determines how to control them to minimize SPL. Eight PTFE laminated water-repellent fabrics, composed of four different film types (A, B, C, D) and with two different fabrics, were used as test specimens. Frictional sounds generated at 1.21m/s were recorded by using a fabric sound generator and SPLs were analyzed through Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured by KES-FB. The SPL value was lowest at 74.4dB in film type A and highest as 85.5dB in type D. Based on ANOVA and post-hoc test, specimens were classified into less Loud Group (A, B) and Loud Group (C, D). It was shown that SPL was lower when 2 layer (instead of 3 layer), filament yarn than staple, and thin fiber than thick were used. In Group I, shearing properties (G, 2HG5), geometrical roughness (SMD), compressional properties (LC, RC) and weight (W) showed high correlation with SPL however, elongation (EM) and shear stiffness (G) did with SPL in Group II.

Molecular Interaction of Dimethylsulfoxide with Water and Alkanols : A Vapor Pressure Osmometry Study (디메틸술폭시드와 물 및 알칸올과의 분자 상호작용 : 증기압 삼투법에 의한 연구)

  • Eung-Gyun Kim;Yongseog Chung;Young-Kook Shin
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.753-756
    • /
    • 1993
  • Studies on the molecular interactions of dimethylsulfoxide (DMSO) with water and/or some alkanols were carried out by vapor pressure osmometry at 40$^{\circ}C$. Negative deviation from Raoult's law was observed for the DMSO-water, methanol, ethanol, 1-propanol, 2-propanol, and 2-methyl-1-propanol systems, whereas positive deviation from Raoult's law was observed for the DMSO-1-butanol and 1-pentanol systems. The results were interpreted in terms of molecular interactions between unlike molecules, and of self-association of DMSO molecules, respectively. Measured chemical shift of hydroxyl proton of the solvents also supported the results.

  • PDF

Room Temperature Chemical Vapor Deposition for Fabrication of Titania Inverse Opals: Fabrication, Morphology Analysis and Optical Characterization

  • Moon, Jun-Hyuk;Cho, Young-Sang;Yang, Seung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2245-2248
    • /
    • 2009
  • This paper demonstrates room temperature chemical vapor deposition (RTCVD) for fabricating titania inverse opals. The colloidal crystals of monodisperse polymer latex spheres were used as a sacrificial template. Titania was deposited into the interstices between the colloidal spheres by altermate exposures to water and titanium tetrachloride (Ti$Cl_4$) vapors. The deposition was achieved under atmospheric pressure and at room temperature. Titania inverse opals were obtained by burning out the colloidal template at high temperatures. The filling fraction of titania was controlled by the number of deposition of Ti$Cl_4$ vapor. The morphology of inverse opals of titania were investigated. The optical reflection spectra revealed a photonic band gap and was used to estimate the refractive index of titania.

Design and Evaluation of Multiple Effect Evaporator Systems According to the Steam Ejector Position (증기 이젝터 위치에 따른 다중효용증발시스템의 설계 및 성능분석)

  • Kim, Deukwon;Choi, Sangmin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.434-443
    • /
    • 2016
  • The evaporation of water from an aqueous solution is widely used in the food, desalination, pulp, and chemical industries. Usually, a large amount of energy is consumed in the evaporation process to boil off water due to atmospheric pressure. As a way of improving the energy efficiency of the evaporation process, the combination of multiple effect evaporation and thermal vapor recompression has been proposed and has become a successful technique. In this study, 4 multiple-effect falling film type evaporators for sugar solution are designed and the energy efficiency of the system is analyzed in response to the selection of the steam ejector position. Energy efficiency is increased and vapor is more compressed in the steam ejector as the Thermal Vapor Recompression (TVR) is arranged in the rear part of the evaporator system. A simplified 0-dimensional evaporator model is developed using non-linear equations derived from mass balances, energy balances, and heat transfer equations. Steam economy is calculated to compare the evaporation performance of the 4 proposed evaporators. The entrainment ratio, compression ratio, and expansion ratio are computed to check the ejector performance.

1-D Analysis for Water Spray Cooling of Exhaust Gas in Combustor Test Facility (물 분무를 이용한 연소가스 냉각 1차원 해석)

  • Im, Ju Hyun;Kim, Myung Ho;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The cooling of hot exhaust gas is an important issue for the construction of combustor test facility. Water spray is an effective method for exhaust gas cooling due to its large latent heat in process of evaporation. In this study, 1-D analysis has been performed based on continuity, energy conservation, and saturated vapor property to understand water spray cooling of combustion gas. In the exhaust duct of combustor test facility, the injected water decreases combustion gas temperature, and evaporates in the combustion gas. However, some of the injected water is collected in the sump due to condensation. The evaporation of water helps combustion gas cooling, but causes pressure increase inside the exhaust duct due to increase of vapor pressure. These phenomena has been analyzed by 1-D modeling in this study. From 1-D analysis, the adequate mass flow rate of water spray to cool combustion gas and to avoid excessive pressure rise inside the exhaust duct has been decided.

Chemical Modification of Wood with Alkylene Oxides, Vinylpirrolidinone and Furans:Effects on Dimensional Stabilization

  • Guevara, R.;Moslemi, A.A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.38-52
    • /
    • 1982
  • The effect of propylene oxide, butylene oxide, furan resin, and vinylpyrrolidinone in controlling wood dimensional stability have been examined. Wood in the green or ovendry condition was treated with various chemical treatments using a vacuum-pressure procedure, and treated specimens were tested for tangential sweelling, moisture gain, and changes in sorption hysteresis. Results' indicate that propylene oxide, and butylene oxide enhanced with the crosslin king agent trimethylol propane trimethacrylate and applied to ovendry wood were the most efficient chemical treatments in controlling tangential sweeling caused by liquid water or water vapor, and in reducing water vapor adsorption. The sorption behavior of treated wood as depicted by the ratios of sorption was "very favorable" in most instances. In the particular case of furan resin treatments, ratios of sorption were improved from 25 to 100 percent as compared to those of untreated wood.

  • PDF

Property Evaluation of Breathable Blend Fabric of MPCE Copolymer and Wet Coagulated Polyurethane (MPCE copolymer와 습식 폴리우레탄의 블렌드에 의한 투습방수 나일론 직물의 제반 물성변화에 관한 연구)

  • Yi, Jong-Woo;Chae, Ei-Jung;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.322-330
    • /
    • 2014
  • The phospholipid-based MPCE(2-Methacryloxyethyl Phosphoryl Chlorine) copolymer was mixed with wet polyurethane for coating of nylon fabrics. The substitution rate of water in coagulation bath with DMF was changed under control of the size of formed hydrophilic microporous cell enable to manufacture excellent breathable, anti-bacterial and moisture control fabrics. Biocompatible property, vapor permeability, hydrostatic pressure, moisture management and anti-bacterial property were investigated for treated nylon fabrics. In result, increased moisture transmission rates, decreased water resistance and outstanding moisture control property could be confirmed by enhanced hydrophilicity of wet-coated nylon fabric with MPCE copolymer.