• Title/Summary/Keyword: Vapor permeability

Search Result 233, Processing Time 0.031 seconds

Effects of Relative Humidity and Fiber Properties on the Moisture Permeability of Multilayer Fabric Systems (환경 및 섬유 특성이 멀티레이어 직물시스템의 투습성에 미치는 영향)

  • Suhyun Lee;Sohyun Park
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • This study aimed to determine the effects of relative humidity and fiber properties on the moisture permeability of multilayer systems by measuring water vapor transmission in the overlapping condition of various fabrics. The results confirmed that the property of the fabric in contact with the humid environment affects the moisture permeability. If the layer facing the humid environment is hydrophobic and the layer facing the dry environment is superhydrophobic, water vapor transmission increases by up to 17.8% compared to the opposite conditions. Comparing the correction values of the water vapor transmission reflecting the thickness of the specimen under the multilayer condition showed that permeability was higher when the hydrophilic or hydrophobic layer was facing the humid environment. The opposite was true from the "push-pull" effect of absorption mechanism. In the case of moisture permeability, the more hydrophilic the surface facing the humid environment, the more permeable that water vapor diffuses and passes through. It was concluded that the "pull-push" effect, in which water vapor diffuses widely through the hydrophilic facing a humid environment and then passes through the hydrophobic layer, contributes to the improvement of permeability. Permeability differed according to the multilayer overlapping condition. When the relative humidity was high, the "pull-push" effect was insignificant. This is caused by water droplets absorption after the partial migration of water due to condensation. These results suggest that the overlapping conditions and properties of fabrics should vary depending on heavy sweating or not.

Relationship between RVA Properties and Film Physical Properties of Native Corn Starch and Hydroxypropylated Corn Starch (천연옥수수전분과 hydroxypropyl화 옥수수전분의 RVA특성과 필름 물성의 관계)

  • Han, Youn-Jeong;Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1023-1029
    • /
    • 2002
  • Relationship between RVA properties and physical properties of film made from native corn starch and hydroxypropylated corn starch at various levels of plasticizers was examinel. Tensile strength of the film decreased, but its elongation and water vapor permeability increased with increasing plasticizer concentration. The film with glycerol showed greater changes in physical properties than that with sorbitol. Hydroxypropylated starch film showed lower tensile strength, higher elongation, and higher water vapor permeability than the native starch film. Sorbitol resulted in films with relatively high tensile strength, whereas glycerol produced films with increased elongation. The most reliable parameters for the relationship between RVA properties and film properties were RVA peak viscosity, tensile strength, and water vapor permeability. Water vapor permeability and tensile strength had linear relationship with RVA properties. The tensile strength and water vapor permeability of film could be predicted using the RVA peak viscosity.

Analysis of Water-Vapor Permeance and Ventilation Property of the Porous Construction Materials (다공성 건축자재의 투습 및 통기성 분석에 대한 연구)

  • Kim, Jong-Won;Ahn, Young-Chull
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.754-757
    • /
    • 2008
  • To maintain the indoor air quality, many ventilation systems and technologies have been developed in the highly insulated and air tight buildings. In this study, a porous construction material, which is applicable to passive ventilation system, is developed and measured the performances of the permeability and the resistance of water vapor, and the dust collection efficiency. The average coefficient of water vapor permeability shows $3.6\;g/m^2{\cdot}h{\cdot}mmHg$, which is slightly higher than Hanji ($2.4{\sim}3.2\;g/m^2{\cdot}h{\cdot}mmHg$) and the average water vapor resistance factor shows $0.303\;g/m^2{\cdot}h{\cdot}mmHg/g$, which is slightly smaller than Hanji($0.309{\sim}0.315\;g/m^2{\cdot}h{\cdot}mmHg/g$). The pressure drop of the porous construction material is smaller than the HEPA filter and the minimum dust collection efficiency shows 82.8% in the range of $2{\sim}9\;cm/s$.

  • PDF

Gas and Lipid Permeabilities and Biodegradability of Poly(3-Hydroxybutyric Acid)/Chitosan Blend Film (Poly(3-Hydroxybutyric Acid)와 Chitosan 블렌드 필름의 기체 투과도, 유지 투과도 및 생분해도)

  • 김미라
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1224-1229
    • /
    • 2004
  • The blend films of poly(3-hydroxybutyric acid) (PHB) with chitosan were prepared and water vapor transmission rate, oxygen permeability and lipid permeability of the PHB/chitosan films were measured. Additionally, the biodegradability of the PHB/chitosan films was also evaluated. Water vapor transmission rate and oxygen permeability of the films decreased by the addition of chitosan. The addition of polyethylene glycol (PEG, plasticizer), however, increased the water vapor transmission rate and oxygen permeability of the films. In the evaluation of lipid permeability, all the films except PHB (the film made of only PHB) and PHB-P (the film made of PHB and PEG) did not permeate beef tallow for 24 hours. The consumed oxygen for PHB/chitosan films during incubation was greater than that for the control on the biodegradability determination of the films, which implies that PHB/chitosan films were degraded by the microorganisms. The higher PHB ratio of the films was, the faster biodegradation of the films occurred.

A Study on the Thermal Resistance of Wool Fabric Constructions (의류직물의 구성조건에 따른 열저항 특성 연구)

  • Kim, Tae-Hoon;Jun, Byung-Ik
    • Fashion & Textile Research Journal
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2001
  • The purpose of this study was to determine the thermal characteristics of men's suits ensembles and their fabrics. For the study, 100% wool fabrics were woven with various fabric structure, fabric density and yam count and With the use of these, 12 men's suits were made with the same design. Physical characteristics that affect thermal transport properties, including drapery, cover factor; bulk density, keeping warmth ratio, vapor permeability, air permeability and porosity of the fabrics were measured. In addition, thermal resistance of men's suit ensembles, including Y-shirts, inner wear and socks was measured on the thermal manikin in the environmental chamber. The result of the study was as follows: 1. In terms of fabric structure, keeping warmth ratio of plain woven fabrics was higher than those of twill and satin woven fabrics and also, vapor and air permeability and porosity of plain woven fabrics were higher than those of twill and satin woven fabrics. 2. The result showed that thermal resistance of 12 ensembles were in the range of 0.77clo~0.97clo. 3. There was little correlation between woven condition such as, including structure, fabric density and yam count and thermal resistance of ensembles.

  • PDF

Preparation of Zeolite-Filled PDMS Membranes and Its Properties for Organic Vapor Separation

  • Kim, Min-Joung;Youm, Kyung-Ho
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.48-55
    • /
    • 2000
  • In order to improve organic vapor separation efficiency of polydimethylsiloxane (PDMS) membrane, various zeolites (zeolite 4A, zeolite 13X and natural zeolite) were introduced into a thin PDMS film. The measurements of permeability and selectivity of zeolite-filled PDMS membranes were carried out with a CO$_2$gas and a CO$_2$gas/acetic acid vapor mixture, respectively. The CO$_2$permeability of zeolite-filled membranes decreased with increasing zeolite content and then recovered up to 30 wt% content. The effect of zeolite type on the improvement of CO$_2$permeability was found to be in the order of zeolite 13X > natural zeolite > 4A. The CO$_2$selectivity of zeolite-filled membranes was enhanced up to 9 times compared with the selectivity of a pure (unfilled) PDMS membrane. The effect of zeolite type on the improvement of CO$_2$selectivity was found to be in the order of natural zeolite > zeolite 13X > zeolite 4A.

  • PDF

Properties of Biodegradable Films Produced from Rice Bran and Roasted Sesame Meal through Chemical Modifications

  • Bae, Dongho;Kim, Woo Jung;Jang, In Sook
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.79-85
    • /
    • 2000
  • Biodegradable films were prepared from roasted sesame meal and rice bran. Acetic anhydride, succinic anhydride, and formaldehyde were added to the film-forming solutions, and their effects on tensile strength, percent elongation, water vapor permeability, and water solubility of the films were studied. Roasted sesame meal did not form film without acylation or addition of formaldehyde. Acylated roasted sesame films had higher tensile strength and water-solubility, and lower % elongation than rice bran films. Acylation with acetic and succinic anhydrides increased tensile strength, percent elongation, and water solubility of rice bran films, but decreased water vapor permeability. Treatment with formaldehyde increased tensile strength of roasted sesame and rice bran films and % elongation of rice bran films, while reducing water-solubility of roasted sesame and rice bran films and water vapor permeability of rice bran films.

  • PDF

A Stud on the Water Vapor Permeability of Air Cell Structure of Ultra Rapid Harding Membrane Waterproofing Using Fixed Screw Hybrid Method (고정형 스크류 혼합 방식을 이용한 초속경 도막방수층 에어 셀 구조의 수증기투과성에 관한 연구)

  • Kim, Yun-Ho;Kim, Hyun-Min;Park, Jin-Sang;Song, Je-Young;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.225-226
    • /
    • 2013
  • Existing polyurethane membrane waterproofing has been raised defects such as heaving. Therefore, We will be utilizing as the basic experimental data by the water vapor permeability test to the air cell structure of ultra rapid harding membrane waterproofing using the static mixing system in this study.

  • PDF

A Study on the Evaluation and Improvement of Permeability in Radial and Tangential Section of Domestic Softwoods (국산 침엽수의 방사, 접선단면의 투습성 평가와 개선방안에 관한 연구)

  • KIM, Joon Ho;YANG, Seung Min;LEE, Hyun Jae;PARK, Ki Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.832-846
    • /
    • 2020
  • The purpose of this research was to evaluate the vapor permeability of nine different species of domestic softwood and the vapor permeability evaluation through the production of small wall structures for the developing applications, utilizing the vapor permeability of wood. In addition, the permeability evaluation was attempted by means of the production of a small wall structure injected with a waste material, bottom ash, as a moisture absorbent for improving the permeability. Consequently, the results of the vapor permeability evaluation by means of Sd value are as follows: (1) It was observed that Abies holiphylla, Picea jezoensis, Ginkgo biloba, Pinus koraiensis and Pinus rigida are permeable to moisture among 9 species of domestic softwood in Korea. (2) By means of this, semi-permeability efficiency was evaluated when producing a small wall structure. (3) Besides, improved effects of permeability were evaluated when producing a small wall structure inserted with bottom ash. As a result, it was confirmed that the Sd value of Pinus koraiensis turned out to be 1.63, which is superior to other 8 tree species.

The Effective Evaluation of Soil Remediation Technology by Gas Phase Concentration Trend (가스상 물질의 농도변화를 이용한 오염토양 복원의 타당성 평가)

  • Park, Duck-Shin;Jung, Woo-Sung;Kang, Sun-Ki;Kim, Moo-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1233-1241
    • /
    • 2000
  • The purpose of this study is to see the remediability and pilot system operating condition on diesel contaminated areas. Air permeability(k) and trend of gas phase ($O_2/CO_2/VOCs$) concentration to determine the remediation rate of the contaminated sites are very important. So we tested air permeability and trend of gas phase concentration. Throughout soil vapor extraction(SVE) and bioventing hybrid pilot test on different conditions, the range of air permeability(k) was 1985~1194 darcy. The tests result in soil vapor extraction and bioventing hybrid system was appropriate on this test sites, and the suitable injection air flow rate was $3.5m^3/hr$.

  • PDF