• Title/Summary/Keyword: Vapor compressor

Search Result 92, Processing Time 0.028 seconds

Effects of Vapor Injection on a Compressor in a Transcritical CO2 Cycle (초임계 CO2 사이클에서 가스 인젝션이 압축기 성능에 미치는 영향)

  • Kim, Woo-Young;Shim, Jae-Hwi;Lee, Yong-Ho;Kim, Hyun-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.16-21
    • /
    • 2007
  • Potential advantages of using vapor injection in a two stage rotary compressor for a $CO_2$ heat pump water heater system were addressed in this paper by numerical simulation. Vapor separated from a flash tank in the middle of the expansion process can be used for injection into the second stage suction plenum of the compressor to improve the system performance. Vapor injection increases the intermediate pressure between the two stages, thus increasing the first stage compressor work and reducing that of the second stage. As a whole, however, the compressor input power increases due to injected mass flow rate for the second stage. Computer simulation showed that increment of the cooling capacity by vapor injection exceeded that of the compressor work, thus improving the system performance. COP improvement by vapor injection was calculated to be about 5-14% for normal operating conditions. With vapor injection, a maximum COP was found when the displacement volume of the second stage becomes 90-95% of that of the first stage of the compressor.

A Study on the Micro Vapor Compressor based on Microfabrication Process for the Application to the Micro Miniature Refrigeration System (초소형 냉동시스템의 응용을 위한 마이크로 증기 압축기의 개발 및 성능에 관한 연구)

  • Yoon, Jae-Sung;Choi, Jong-Won;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.477-482
    • /
    • 2006
  • In this study, a micro vapor compressor has been designed, fabricated and tested. The micro vapor compressor was made of silicon substrates and fabricated by micromachining process. The compressor is driven by a piezoelectric actuator which is widely used in microfluidic systems because of its strong force and rapid response. The actuator is a bimorph structure which consists of a silicon membrane and a piezoelectric ceramic film. A simulation work was conducted on the performance characteristics of the compressor. The simulation investigated the flow rate variation under various back pressure conditions. Experimental works were carried out on the operation of a compressor and the test results were compared with the simulation results.

  • PDF

Design of Thermal Vapor Compressor by Numerical Analysis and Experimental Verification (전산해석을 통한 열증기압축기 설계와 실험적 검증)

  • Park, Il-Seouk;Park, Sang-Min;Ha, Ji-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.33-39
    • /
    • 2005
  • A thermal vapor compressor in which the subsonic/supersonic flow appears simultaneously, has been accurately designed through the CFD analysis for the various shape parameters such as the primary nozzle shape, converging duct shape, mixing tube diameter, and so on. The performance of the developed thermal vapor compressor has been experimentally verified to be installed in a Multi Effect Desalination(MED) plant as an important element. In this paper, the effects of each parameter are discussed on the basis of CFD results and the experimental results for various boundary conditions(motive pressure, suction pressure, and discharge pressure) are presented in compared with CFD results. The two results show a good agreement with each other within 2 % accuracy with regard to the entrainment ratio.

Research and Development of the Triple Effect Absorption Chiller-Heater Technology in Japan

  • Kashiwagi, Takao;Akisawa, Atsushi;Hamamoto, Yoshinori
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.33 no.3
    • /
    • pp.43-49
    • /
    • 2004
  • This article reviews R&D of triple effect cycle developed in Japan. Most of the refrigeration and heat pump technologies are dominated by vapor compressor system. The vapor compressor system, however, is highly concerned with the environmental regulations , as most of the vapor compressor technologies are using CFCs or HCFCs which are known as ozone depleting and global warming gases. As a consequence, refrigeration technologists are trying to invent or to develop an alternative to vapor compressor refrigeration devices. Thermally driven, absorption technology is one of the possible alternatives. At the moment, absorption cycle is most promising technology The paper summarizes briefly the current research and development in advanced technologies of triple effect absorption chiller-heater in Japan.(omitted)

  • PDF

The Design of a Linear Compressor Based on the Resonance Characteristics for the Air Conditioner (공진특성을 고려한 냉동/공조용 횡자속 선형압축기의 설계)

  • Hong, Yong-Ju;Park, Seong-Je;Kim, Hyo-Bong
    • 연구논문집
    • /
    • s.34
    • /
    • pp.39-46
    • /
    • 2004
  • The compressors in the air conditioner have the role of the pressurization and circulation of the refrigerant. The hermetic reciprocating compressors driven by rotary motor have been used for the air conditioner. The linear compressor has very simple structure and enhancement in the efficiency in comparison to that of conventional reciprocating compressor. The linear compressors are widely used for the small cryogenic refrigerator (below 1 kW), such as the Stirling refrigerator and pulse tube refrigerator. In the cryogenic application, the pressure ratio of the linear compressor is below 1.5, but the linear compressor for the air conditioner should overcome the high pressure ratio and the large pressure difference between the each sides of the piston. The resonance characteristics of the linear compressor has the significant impacts on the power consumption. To minimize the power consumption, the linear compressor should be operated at the resonance point. In the resonance characteristics, the role of the mechanical and gas spring should be considered. In present study, the cycle of the analysis of the vapor compression refrigeration cycle with the different refrigerants (R134a, R4l0a, R600a) and the designs of the linear compressor are performed. The effects of the stiffness of the mechanical spring on the electromagnetic forces would be discussed. Finally, the results show the design specification of the linear compressor for the air conditioner.

  • PDF

Heating Performance Characteristics of a Heat Pump with a Variable Speed Injection Scroll Compressor (인젝션형 가변속 스크롤 압축기를 적용한 히트펌프의 난방성능 특성에 관한 연구)

  • Ko, Suk-Bin;Heo, Jae-Hyeok;Cho, Il-Yong;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.377-384
    • /
    • 2012
  • Vapor injection technique has been applied to prevent performance degrdation of a heat pump at low ambient temperatures. In this study, the heating performance of a heat pump with a variable speed injection scroll compressor using R-410A was investigated by applying sub-cooler vapor injection(SCVI) and flash tank vapor injection(FTVI). The heating performance of the heat pump was measured by varying compressor frequency and outdoor temperature. The heating capacity of the FTVI system was 8~10% higher than that of the SCVI system at all operating conditions. On the other hand, the heating performance improvement with the increase in the compressor frequency was more prominent in the SCVI system than in the FTVI system.

Design and Application of Thermal Vapor Compressor for Multi-Effect Desalination Plant (열증기압축기 설계와 MED 담수설비에의 적용)

  • Park, Il-Seok;Park, Sang-Min;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1670-1675
    • /
    • 2004
  • A thermal vapor compressor in which the subsonic/supersonic flow appears simultaneously, has been accurately designed through the CFD analysis for the various shape parameters such as the primary nozzle shape, converging duct shape. mixing tube diameter, and so on. The performance of the developed thermal vapor compressor has been experimentally verified to be installed in a Multi Effect Desalination(MED) plant as an important element, In this paper, the experimental results for Various boundary conditions(motive pressure, suction pressure, and discharge pressure) are presented in comparing with CFD results. The two results show a good agreement with each other within 3.5 % accuracy with regard to the entrainment ratio.

  • PDF

Robust Design for Shape Parameters of High Pressure Thermal Vapor Compressor by Numerical Analysis (전산해석을 통한 고압열증기압축기 형상변수에 관한 강건 설계)

  • Park, Il-Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.931-937
    • /
    • 2008
  • A high motive pressure thermal vapor compressor(TVC) for a commercial multi-effect desalination(MED) plant is designed to have a high entraining performance and its robustness is also considered in the respect of operating stability at the abrupt change of the operating pressures like the motive and suction steam pressure which can be easily fluctuated by the external disturbance. The TVC having a good entraining performance of more than entrainment ratio 6.0 is designed through the iterative CFD analysis for the various primary nozzle diameter, mixing tube diameter and mixing tube length. And then for a couple of TVC having a similar entrainment ratio, the changes of the entrainment ratio are checked along the motive and suction pressure change. The system stability is diagnosed through the analyzing the changing pattern of the entrainment ratio.

Effects of the electronic expansion valve and variable velocity compressor on the performance of a refrigeration system

  • Lago, Taynara G.S.;Ismail, Kamal A.R.;Nobrega, Claudia R.E.S.;Moura, Luiz F.M.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • Energy consumption of air-conditioning and refrigeration systems is responsible for about 25 to 30% of the energy demand especially in hot seasons. This equipment is mostly electricity dependent and their use in principle affects negatively the environment. Enhancing the energy efficiency of the existing equipment is important as one of the measures to reduce environment impacts. This paper reports the results of an experimental study to evaluate the impacts of the use electronic expansion valve and variable velocity compressor on the performance of vapor compression refrigeration system. The experimental rig is composed of two independent circuits one for the vapor compression system and the other is the secondary fluid system. The vapor compression system is composed of a forced air condenser unit, evaporator, hermetic compressor and expansion elements, while the secondary system has a pump for circulating the secondary fluid, and an air conditioning heat exchanger. The manufacturer's data was used to determine the optimal points of operation of the system and consequently tests were done to evaluate the influence of variation of the compressor velocity and the opening of the expansion device on the performance of the refrigeration system. A fuzzy logic model was developed to control the rotational velocity of the compressor and the thermal load. Fuzzy control model was made in LabVIEW software with the objective of improving the system performance, stability and energy saving. The results showed that the use of fuzzy logic as a form of control strategy resulted in a better energy efficiency.

An Experimental Study on the Heating Performance Characteristics of a Vapor Injection Heat Pump for Electric Vehicles (가스 인젝션을 적용한 전기자동차용 히트펌프의 난방성능 특성에 대한 실험적 연구)

  • Kim, Dongwoo;Jung, Jongho;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.308-314
    • /
    • 2014
  • A heat pump has been considered as a thermal management unit for electric vehicles, including the heating and cooling of the cabin. However, the heat pump shows performance degradation at low outdoor temperatures or high compressor speeds. In this study, a R-134a heat pump for an electric vehicle was designed to improve system efficiency, by applying vapor injection with an internal heat exchanger. The heating performance characteristics of the vapor injection heat pump were analyzed at various compressor speeds and outdoor temperatures. The vapor injection heat pump showed 13.3% COP improvement over the non-injection heat pump, when the heating capacity was fixed at 5.2 kW. In addition, the heating capacity of the vapor injection system increased by 9.6%, as compared to the non-injection system.