• Title/Summary/Keyword: Vapor Deposition Process

Search Result 767, Processing Time 0.026 seconds

A Study of Deposition Properties and Characteristics of $SiO_2$T film Grown by Remote Plasma-Enhanced Chemical Vapor Deposition (Remote PECVD 산화막의 증착특성 및 박막 특성 연구)

  • 정윤권;정문식;김흥락;권영규;강봉구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.63-70
    • /
    • 1992
  • Deposition properties and film characteristics of Remote PECVD silicon dioxide were investigated. Using $N_{2}O/SiH_{4}$, the effects of changing the process conditions` the pressure, the substrate temperature, and the gas mixing ration, on the film quality were observed. A comparison of film qualites of the Remote PECVD SiO$_2$ with that of a Direct PECVD SiO$_2$ was made. The experimental results show that the Remote PECVD SiO$_2$ has better electrical, physical, and annealing properties than the Direct PECVD oxide.

  • PDF

Characterization of microcrystalline silicon thin films prepared by layer-by-layer technique with a OECVD system

  • Kim, C.O.;Nahm, T.U.;Hong, J.P.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.116-120
    • /
    • 1999
  • Possible role of hydrogen atoms on the formation of microcrystalline silicon films was schematically investigated using a plasma enhanced chemical vapor deposition system. A layer-by-layer technique that can alternate deposition of ${\alpha}$-Si thin film and then exposure of H2 plasma was used for this end. The experimental process was extensively carried out under different hydrogen plasma times (t2) at a fixed number of 20 cycles in the deposition. structural properties, such as crystalline volume fractions and grain shapes were analyzed by using a Raman spectroscopy and a scanning electron microscopy. Electrical transports were characterized by the temperature dependence of the dark conductivity that gives rise to the calculation of activation energy (Ea). Optical absorption was measured using an ultra violet spectrophotometer, resulting in the optical energy gap (Eopt). Our experimental results indicate that both of the hydrogen etching and the structural relaxation effects on the film surface seem to be responsible for the growth mechanism of the crystallites in the ${\mu}$c-si films.

  • PDF

Sputtering Technology and Prospect for Transparent Conductive Thin Film (투명전도성 박막의 활용을 위한 스퍼터링 증착 기술과 전망)

  • Sangmo Kim;Kyung Hwan Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.109-124
    • /
    • 2023
  • For decades, sputtering as a physical vapor deposition (PVD) method has been a widely used technique for film coating processes. The sputtering enables oxides, metals, alloys, nitrides, etc to be deposited on a wide variety of substrates from silicon wafers to polymer substrates. Meanwhile, transparent conductive oxides (TCOs) have played important roles as electrodes in electrical applications such as displays, sensors, solar cells, and thin-film transistors. TCO films fabricated through a sputtering process have a higher quality leading to an improved device performance than other films prepared with other methods. In this review, we discuss the mechanism of sputtering deposition and detail the TCO materials. Related technologies (processing conditions, materials, and applications) are introduced for electrical applications.

A Study on Various Parameters of the PE-CVD Chamber with Wafer Guide Ring (웨이퍼 가이드링 적용에 따른 PE-CVD 챔버 변수에 대한 연구)

  • Hyun-Chul Wang;Hwa-Il Seo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.55-59
    • /
    • 2024
  • Plasma Enhanced Chemical Vapor Deposition (PE-CVD) is a widely used technology in semiconductor manufacturing for thin film deposition. The implementation of wafer guide rings in PE-CVD processes is crucial for enhancing efficiency and product quality by ensuring uniform deposition around wafer edges and reducing particle generation. On the other hand, to prevent overall temperature non-uniformity and degradation of thin film quality within the chamber, it is essential to consider various parameters comprehensively. In this study, after applying the wafer guide rings, temperature variations and fluid flow changes were simulated. Additionally, by simulating the temperature and flow changes when applied to the PE-CVD chamber, this paper discusses the importance of optimizing variables within the entire chamber.

  • PDF

Synthesis and characterization of $SnO_2$ nanowires on Si substrates in a thermal chemical vapor deposition process (열화학기상증착법을 이용한 Si 기판 위의 $SnO_2$ 나노와이어 제작 및 물성평가)

  • Lee, Deuk-Hee;Park, Hyun-Kyu;Lee, Sam-Dong;Jeong, Soon-Wook;Kim, Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.91-94
    • /
    • 2007
  • Single-crystalline $SnO_2$ nanowires were successfully grown on Si(001) substrates via vapor-liquid-solid mechanism in a thermal chemical vapor deposition. Large quantity of $SnO_2$ nanowires were synthesized at temperature ranges of $950{\sim}1000^{\circ}C$ in Ar atmosphere. It was found that the grown $SnO_2$ nanowires are of a tetragonal rutile structure and single crystalline by diffraction and transmission electron microscopy measurements. Broad emission located at about 600 m from the grown nanowires was clearly observed in room temperature photoluminescence measurements, indicating that the emission band originated from defect level transition into $SnO_2$ nanowires.

Characterization of Al2O3 Thin Film Encasulation by Plasma Assisted Spatial ALD Process for Organic Light Emitting Diodes

  • Yong, Sang Heon;Cho, Sung Min;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.234.2-234.2
    • /
    • 2014
  • Organic light emitting diode (OLED) is considered as the next generation flat panel displays due to its advantages of low power consumption, fast response time, broad viewing angle and flexibility. For the flexible application, it is essential to develop thin film encapsulation (TFE) to protect oxidation of organic materials from oxidative species such as oxygen and water vapor [1]. In many TFE research, the inorganic film by atomic layer deposition (ALD) process demonstrated a good barrier property. However, extremely low throughput of ALD process is considered as a major weakness for industrial application. Recently, there has been developed a high throughput ALD, called 'spatial ALD' [2]. In spatial ALD, the precursors and reactant gases are supplied continuously in same chamber, but they are separated physically using a purge gas streams to prevent mixing of the precursors and reactant gases. In this study, the $Al_2O_3$ thin film was deposited by spatial ALD process. We characterized various process variables in the spatial ALD such as temperature, scanning speed, and chemical compositions. Water vapor transmission rate (WVTR) was determined by calcium resistance test and less than $10-^3g/m^2{\cdot}day$ was achieved. The samples were analyzed by x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM).

  • PDF

Development of Reuse Process Through Recovery and Refinement of Precursor for LED (LED용 precursor 재이용을 위한 회수 및 정제 공정 개발)

  • Yang, Jae Yeol;O, Byung Sung;Yoon, Jae Sik
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • The purpose of this research is to develop a process and a system to collect, purify and reuse the residual quantity of trimethylgallium, used as a raw material, upon GaN epitaxial growth for LED from a metal organic chemical vapor deposition(MOCVD) equipment. This research reviews whether TMGa collected from the process can be used through a chemical and structural characteristics evaluation. As a result of analyzing the purity using ICP-MS and ICP-AES, 7N high purity (99.99999%) of TMGa was obtained. According to checking the structural change of TMGa through NMR analysis, TMGa having pure $(CH_3)_3Ga$ structure was obtained without structural change. For reliability review of the collected TMGa, u-GaN was deposited using the MOCVD process and an structural, optical and electrical characteristics evaluation was conducted. As a result, it was found out that the reuse was possible.

Artificial Control of ZnO Nanorods via Manipulation of ZnO Nanoparticle Seeds (산화아연 나노핵의 조작을 통한 산화아연 나노로드의 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.399-399
    • /
    • 2008
  • Synthesis and characterization of ZnO structure such as nanowires, nanorods, nanotube, nanowall, etc. have been studied to multifunctional application such as optical, nanoscale electronic and chemical devices because it has a room-temperature wide band gap of 3.37eV, large exiton binding energy(60meV) and various properties. Various synthesis methods including chemical vapor deposition (CVD), physical vapor deposition, electrochemical deposition, micro-emulsion, and hydrothermal approach have been reported to fabricate various kinds of ZnO nanostructures. But some of these synthesis methods are expensive and difficult of mass production. Wet chemical method has several advantage such as simple process, mass production, low temperature process, and low cost. In the present work, ZnO nanorods are deposited on ITO/glass substrate by simple wet chemical method. The process is perfomed by two steps. One-step is deposition of ZnO seeds and two-step is growth of ZnO nanorods on substrates. In order to form ZnO seeds on substrates, mixture solution of Zn acetate and Methanol was prepared.(one-step) Seed layers were deposited for control of morpholgy of ZnO seed layers by spin coating process because ZnO seeds is deposited uniformly by centrifugal force of spin coating. The seed-deposited samples were pre-annealed for 30min at $180^{\circ}C$ to enhance adhesion and crystallinnity of ZnO seed layer on substrate. Vertically well-aligned ZnO nanorods were grown by the "dipping-and-holding" process of the substrates into the mixture solution consisting of the mixture solution of DI water, Zinc nitrate and hexamethylenetetramine for 4 hours at $90^{\circ}C$.(two-step) It was found that density and morphology of ZnO nanorods were controlled by manipulation of ZnO seeds through rpm of spin coating. The morphology, crystallinity, optical properties of the grown ZnO nanostructures were carried out by field-emission scanning electron microscopy, high-resolution electron microscopy, photoluminescence, respectively. We are convinced that this method is complementing problems of main techniques of existing reports.

  • PDF

Properties of AlTiN Films Deposited by Cathodic Arc Deposition (음극 아크 증착으로 제조된 AlTiN 박막의 특성)

  • Yang, Ji-Hoon;Kim, Sung-Hwan;Song, Min-A;Jung, Jae-Hun;Jeong, Jae-In
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.307-315
    • /
    • 2016
  • The properties of AlTiN films by a cathodic arc deposition process have been studied. Oblique angle deposition has been applied to deposit AlTiN films. AlTiN films have been deposited on stainless steel (SUS304) and cemented carbide (WC) at a substrate temperature of $500^{\circ}C$. AlTiN films were analyzed by scanning electron microscopy, glow-discharge light spectroscopy, micro-vickers hardness, and nanoindenter. When applying a current of 50 A to the cathodic arc source, it showed that the density of macroparticle of AlTiN films was 5 lower than other deposition conditions. With the increase of the bias voltage applied to the substrate up to -150 V, the density of macroparticle was decreased. The change of the $N_2$ flow rate during coating process made no influence on the film properties. For the multi-layered films, the film prepared at oblique angle of $60^{\circ}$ showed the highest hardness of 28 GPa and $H^3/E^2$ index of 0.18. AlTiN films have been shown a good oxidation resistance up to $800^{\circ}C$.

Electron Field Emission Characteristics of Silicon Nanodots Formed by the LPCVD Technique (LPCVD로 형성된 실리콘 나노점의 전계방출 특성)

  • An, Seungman;Yim, Taekyung;Lee, Kyungsu;Kim, Jeongho;Kim, Eunkyeom;Park, Kyoungwan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.342-347
    • /
    • 2011
  • We fabricated the silicon nanodots using the low pressure chemical vapor deposition technique to investigate their electron field emission characteristics. Atomic force microscope measurements performed for the silicon nanodot samples having various process parameters, such as, deposition time and deposition pressure, revealed that the silicon nanodots with an average size of 20 nm, height of 5 nm, and density of $1.3\;{\times}\;10^{11}\;cm^{-2}$ were easily formed. Electron field emission measurements were performed with the silicon nanodot layer as the cathode electrode. The current-voltage curves revealed that the threshold electric field was as low as $8.3\;V/{\mu}m$ and the field enhancement factor reached as large as 698, which is compatible with the silicon cathode tips fabricated by other techniques. These electron field emission results point to the possibility of using a silicon-based light source for display devices.