• 제목/요약/키워드: Vapor Deposition Process

검색결과 767건 처리시간 0.032초

화염가수분해 증착 공정에서 기판온도의 변화에 따른 다성분 입자의 부착 및 소결특성에 관한 연구 (Effect of Substrate Temperature on Multi-component Particle Deposition and Consolidation in Flame Hydrolysis Deposition)

  • 신형수;백종갑;최만수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.428-433
    • /
    • 2000
  • The consolidation behavior of multicomponent particles prepared by the flame hydrolysis deposition process is examined to identify the effects of Si substrate temperature. To fabricate multi-component particles, a vapor-phase ternary mixture of $SiCl_4(100 cc/min),\;BCl_3(30cc/min)\;and\;POCl_3,(5cc/min)$ was fed into a coflow diffusion oxy-hydrogen flame burner. The doped silica soot bodies were deposited on silicon substrates under various deposition conditions. The surface temperature of the substrate was measured by an infrared thermometer. Changes in the chemical states of the doped silica soot bodies were examined by FT-IR(Fourier-transformed infrared spectroscopy). The deposited particles on the substrate were heated at $1300^{\circ}C$ for 3h in a furnace at a heating rate of 10K/min. Si-O-B bending peak has been found when surface temperature exceeds $720^{\circ}C$. Correspondingly, the case with substrate temperatures above loot produced good consolidation result.

  • PDF

Synthesis and Characterization of SnO2 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition Using SnCl4 Precursor and Oxygen Plasma

  • 이동권;김다영;권세훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.254-254
    • /
    • 2016
  • Tin dioxide (SnO2) thin film is one of the most important n-type semiconducting materials having a high transparency and chemical stability. Due to their favorable properties, it has been widely used as a base materials in the transparent conducting substrates, gas sensors, and other various electronic applications. Up to now, SnO2 thin film has been extensively studied by a various deposition techniques such as RF magnetron sputtering, sol-gel process, a solution process, pulsed laser deposition (PLD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) [1-6]. Among them, ALD or plasma-enhanced ALD (PEALD) has recently been focused in diverse applications due to its inherent capability for nanotechnologies. SnO2 thin films can be prepared by ALD or PEALD using halide precursors or using various metal-organic (MO) precursors. In the literature, there are many reports on the ALD and PEALD processes for depositing SnO2 thin films using MO precursors [7-8]. However, only ALD-SnO2 processes has been reported for halide precursors and PEALD-SnO2 process has not been reported yet. Herein, therefore, we report the first PEALD process of SnO2 thin films using SnCl4 and oxygen plasma. In this work, the growth kinetics of PEALD-SnO2 as well as their physical and chemical properties were systemically investigated. Moreover, some promising applications of this process will be shown at the end of presentation.

  • PDF

화학기상증착에 의한 Fe-6.5wt%Si철심재료의 특성평가 (Characteristics of Fe-6.5wt%Si Core Material by Chemical Vapor Deposition Method)

  • 윤재식;김병일;박형호;배인성;이상백
    • 한국재료학회지
    • /
    • 제11권6호
    • /
    • pp.512-518
    • /
    • 2001
  • 6.5wt%Si강판을 낮은 철손실, 고투자율 그리고 자왜가 거의 0으로 우수한 자성재료로 잘 알려져 있다. 본 실험에서는 화학기상증착 (Chemical Vapor Deposition)으로 6.5wt%Si 강판을 만들었다 이 과정은 튜브 노내에서 실리콘의 함량이 낮은 Si강판에 SiCl$_4$가스를 반응시킨다. 이때 SiCl$_4$가스에서 분해된 Si의 원자들은 모재인 강판 표면에 증착되어 표면층에 Si가 풍부한 층을 형성한다. 마지막으로 고온에서 확산과정을 통하여 모재 내부로부터 실리콘의 함량이 균일한 강판을 얻을 수 있다. 0.5mm두께를 갖은 6.5wt%Si 강판의 철손실은 고주파수에서 약 8.92W/kg를 나타냈으며 투자율은 53,300으로 일반 실리콘강판, 즉 2.5wt%Si강판의 투자율 37,100보다 약 두배 가량 증가하였다. 또한 기계적인 특성을 평가하기 위해서 일반 0.5wt%Si강판과 773K의 온도에서 수시간 열처리한 강판을 인장실험 하였다. 따라서 수 시간 열처리한 시편에서 연신율이 증가함을 알 수 있었으며 파단면을 관찰한 결과 입 계파단면이 현저히 감소했음을 알았다

  • PDF

Synthesis of Uniformly Doped Ge Nanowires with Carbon Sheath

  • 김태헌;장야무진;최순형;서영민;이종철;황동훈;김대원;최윤정;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.289-289
    • /
    • 2013
  • While there are plenty of studies on synthesizing semiconducting germanium nanowires (Ge NWs) by vapor-liquid-solid (VLS) process, it is difficult to inject dopants into them with uniform dopants distribution due to vapor-solid (VS) deposition. In particular, as precursors and dopants such as germane ($GeH_4$), phosphine ($PH_3$) or diborane ($B_2H_6$) incorporate through sidewall of nanowire, it is hard to obtain the structural and electrical uniformity of Ge NWs. Moreover, the drastic tapered structure of Ge NWs is observed when it is synthesized at high temperature over $400^{\circ}C$ because of excessive VS deposition. In 2006, Emanuel Tutuc et al. demonstrated Ge NW pn junction using p-type shell as depleted layer. However, it could not be prevented from undesirable VS deposition and it still kept the tapered structures of Ge NWs as a result. Herein, we adopt $C_2H_2$ gas in order to passivate Ge NWs with carbon sheath, which makes the entire Ge NWs uniform at even higher temperature over $450^{\circ}C$. We can also synthesize non-tapered and uniformly doped Ge NWs, restricting incorporation of excess germanium on the surface. The Ge NWs with carbon sheath are grown via VLS process on a $Si/SiO_2$ substrate coated 2 nm Au film. Thin Au film is thermally evaporated on a $Si/SiO_2$ substrate. The NW is grown flowing $GeH_4$, HCl, $C_2H_2$ and PH3 for n-type, $B_2H_6$ for p-type at a total pressure of 15 Torr and temperatures of $480{\sim}500^{\circ}C$. Scanning electron microscopy (SEM) reveals clear surface of the Ge NWs synthesized at $500^{\circ}C$. Raman spectroscopy peaked at about ~300 $cm^{-1}$ indicates it is comprised of single crystalline germanium in the core of Ge NWs and it is proved to be covered by thin amorphous carbon by two peaks of 1330 $cm^{-1}$ (D-band) and 1590 $cm^{-1}$ (G-band). Furthermore, the electrical performances of Ge NWs doped with boron and phosphorus are measured by field effect transistor (FET) and they shows typical curves of p-type and n-type FET. It is expected to have general potentials for development of logic devices and solar cells using p-type and n-type Ge NWs with carbon sheath.

  • PDF

플라즈마 유기금속 화학증착을 이용한 지르코니아 박막제조 (fabrication of Zirconia Thin Films by Plasma Enhanced Metal-Organic Chemical Vapor Deposition)

  • 김기동;조영아;신동근;전진석;최동수;박종진
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.155-162
    • /
    • 1999
  • Zirconia thin films of uniform structure were fabricated by plasma-enhanced metal-organic chemical vapor deposition. Deposition conditions such as substrate temperature were observed to have much influence on the formation of zirconia films, therefore the mechanism of decomposition of $Zr[TMHD]_4$precursor and film growth were examined by XRD, FT-IR etc., as well as the determination of the optimal deposition condition. From temperature dependence on zirconia, below the deposition temperature of 523K, the amorphous zirconia was formed while the crystalline of zirconia with preferred orientation of cubic (200) was obtained above the temperature. Deposits at low temperatures were investigated by FT-IR and the absorption band of films revealed that the zirconia thin film was in amorphous structure and has the same organic band as that of Zr precursor. In case of high temperature, it was found that Zr precursor was completely decomposed and crystalline zirconia was obtained. In addition, at 623K the higher RF power yielded the increased crystallinity of zirconia implying an increase in decomposition rate of precursor. However, it seems that RF power has nothing with the zirconia deposition process at 773K. It was found that the proper bubbler temperature of TEX>$Zr[TMHD]<_4$ precursor is needed along with high flow rate of carrier gas. Through AFM analysis it was determined that the growth mechanism of the zirconia thin film showed island model.

  • PDF

Depositon of Transparent Conductive Films by a DC arc Plasmatron

  • Penkov, O.V.;Plaksin, V. Yu.;Joa, S.B.;Kim, J.H.;LEE, H.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.480-480
    • /
    • 2010
  • In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1,500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photo-electron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Sheet resistance of 4 Ohms cm was achieved after the deposition and 30 min annealing in the hydrogen at $350^{\circ}C$. Elevation of the substrate temperature during the deposition process up to $350^{\circ}C$ leads to decreasing of the film's resistance due to rearrangement of the crystalline structure.

  • PDF

A Review on Transfer Process of Two-dimensional Materials

  • Kim, Chan;Yoon, Min-Ah;Jang, Bongkyun;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Large-area two-dimensional (2D) materials synthesized by chemical vapor deposition on donor substrates are promising functional materials for conductors, semiconductors, and insulators in flexible and transparent devices. In most cases, 2D materials should be transferred from a donor substrate to a target substrate; however, 2D materials are prone to damage during the transfer process. The damages to 2D materials during transfer are caused by contamination, tearing, and chemical doping. For the commercialization of 2D materials, a damage-free, large-area, and productive transfer process is needed. However, a transfer process that meets all three requirements has yet to be developed. In this paper, we review the recent progress in the development of transfer processes for 2D materials, and discuss the principles, advantages, and limitations of each process. The future prospects of transfer processes are also discussed. To simplify the discussion, the transfer processes are classified into four categories: wet transfer, dry transfer, mechanical transfer, and electro-chemical transfer. Finally, the "roll-to-roll" and "roll-to-plate" dry transfer process is proposed as the most promising method for the commercialization of 2D materials. Moreover, for successful dry transfer of 2D materials, it is necessary to clearly understand the adhesion properties, viscoelastic behaviors, and mechanical deformation of the transfer film used as a medium in the transfer process.

핫 엠보싱용 점착방지막으로 사용되는 10nm급 두께의 Teflon-like 박막의 형성 및 특성평가 (The Deposition and Characterization of 10 nm Thick Teflon-like Anti-stiction Films for the Hot Embossing)

  • 차남구;김인권;박창화;임현우;박진구
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.149-154
    • /
    • 2005
  • Teflon like fluorocarbon thin films have been deposited on silicon and oxide molds as an antistiction layer for the hot embossing process by an inductively coupled plasma (ICP) chemical vapor deposition (CVD) method. The process was performed at $C_4F_8$ gas flow rate of 2 sccm and 30 W of plasma power as a function of substrate temperature. The thickness of film was measured by a spectroscopic ellipsometry. These films were left in a vacuum oven of 100, 200 and $300^{\circ}C$ for a week. The change of film thickness, contact angle and adhesion and friction force was measured before and after the thermal test. No degradation of film was observed when films were treated at $100^{\circ}C$. The heat treatment of films at 200 and $300^{\circ}C$ caused the reduction of contact angles and film thickness in both silicon and oxide samples. Higher adhesion and friction forces of films were also measured on films treated at higher temperatures than $100^{\circ}C$. No differences on film properties were found when films were deposited on either silicon or oxide. A 100 nm silicon template with 1 to $500\;{\mu}m$ patterns was used for the hot embossing process on $4.5\;{\mu}m$ thick PMMA spun coated silicon wafers. The antistiction layer of 10 nm was deposited on the silicon mold. No stiction or damages were found on PMMA surfaces even after 30 times of hot embossing at $200^{\circ}C$ and 10 kN.

Characteristics of pentacene transistor using Organic Flow Deposition (OFD) equipment

  • Jung, Ki-Taek;An, Young-Ung;Ji, Jong-Yeoul;Choi, Jun-Young;Lee, Young-Jong;Han, Seung-Hoon;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1611-1614
    • /
    • 2007
  • This paper is concerned on design of organic flow deposition system and development of the deposition process for pentacene thin film by OFD and on electrical characteristics of pentacene films deposited by it. OFD will overcome vacuum thermal evaporator's limits and it will provide a large-scale mass, uniform and good electrical performance.

  • PDF

$TiI_4$에 의한 Stainless 강의 Ti증착속도에 관한 연구 (Study on Ti Deposition Rate from $TiI_4$ on Stainless Steel)

  • 유재근;한준수;백영현
    • 한국표면공학회지
    • /
    • 제18권1호
    • /
    • pp.5-11
    • /
    • 1985
  • Titanium was deposited onto AISI-430 stainless steel by chemical vapor deposition from $TiI_4\;and\;H_2$ gas mixture. Effects of temperature, flow rate of the gas, and $TiI_4$ partial pressure on the deposition rate were thoroughly investigated. The deposition rate of Ti was found to be constant at the given temperature and was increased with increasing temperature. The rate is controlled by surface reaction at the flow rate of gas higher than 500 ml/min, whereas at the flow rate lower than that by diffusional process. It is also interesting to note that the reaction mechanism changes at 1050$^{\circ}C$, at temperatures lower than 1050$^{\circ}C$ the activation energy is 56.9 Kcal/mol, whilst at temperatures higher than that is 8.3 Kcal/mol.

  • PDF