• Title/Summary/Keyword: Vanilla RNN

Search Result 3, Processing Time 0.018 seconds

Solar Energy Prediction using Environmental Data via Recurrent Neural Network (RNN을 이용한 태양광 에너지 생산 예측)

  • Liaq, Mudassar;Byun, Yungcheol;Lee, Sang-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.1023-1025
    • /
    • 2019
  • Coal and Natural gas are two biggest contributors to a generation of energy throughout the world. Most of these resources create environmental pollution while making energy affecting the natural habitat. Many approaches have been proposed as alternatives to these sources. One of the leading alternatives is Solar Energy which is usually harnessed using solar farms. In artificial intelligence, the most researched area in recent times is machine learning. With machine learning, many tasks which were previously thought to be only humanly doable are done by machine. Neural networks have two major subtypes i.e. Convolutional neural networks (CNN) which are used primarily for classification and Recurrent neural networks which are utilized for time-series predictions. In this paper, we predict energy generated by solar fields and optimal angles for solar panels in these farms for the upcoming seven days using environmental and historical data. We experiment with multiple configurations of RNN using Vanilla and LSTM (Long Short-Term Memory) RNN. We are able to achieve RSME of 0.20739 using LSTMs.

Real-Time Streaming Traffic Prediction Using Deep Learning Models Based on Recurrent Neural Network (순환 신경망 기반 딥러닝 모델들을 활용한 실시간 스트리밍 트래픽 예측)

  • Jinho, Kim;Donghyeok, An
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, the demand and traffic volume for various multimedia contents are rapidly increasing through real-time streaming platforms. In this paper, we predict real-time streaming traffic to improve the quality of service (QoS). Statistical models have been used to predict network traffic. However, since real-time streaming traffic changes dynamically, we used recurrent neural network-based deep learning models rather than a statistical model. Therefore, after the collection and preprocessing for real-time streaming data, we exploit vanilla RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU models to predict real-time streaming traffic. In evaluation, the training time and accuracy of each model are measured and compared.

Korean Coreference Resolution using Stacked Pointer Networks based on Position Encoding (포지션 인코딩 기반 스택 포인터 네트워크를 이용한 한국어 상호참조해결)

  • Park, Cheoneum;Lee, Changki
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.113-121
    • /
    • 2018
  • Position encoding is a method of applying weights according to position of words that appear in a sentence. Pointer networks is a deep learning model that outputs corresponding index with an input sequence. This model can be applied to coreference resolution using attribute. However, the pointer networks has a problem in that its performance is degraded when the length of input sequence is long. To solve this problem, we proposed two contributions to resolve the coreference. First, we applied position encoding and dynamic position encoding to pointer networks. Second, we stack deeply layers of encoder to make high-level abstraction. As results, the position encoding based stacked pointer networks model proposed in this paper had a CoNLL F1 performance of 71.78%, which was improved by 6.01% compared to vanilla pointer networks.