• 제목/요약/키워드: Vane Shape

검색결과 91건 처리시간 0.02초

핵연료 집합체 혼합날개형상의 수치최적설계 (Numerical Optimization of the Shape of Mixing Vane in Nuclear Fuel Assembly)

  • 서준우;김광용
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.929-936
    • /
    • 2004
  • In the present work, shape of the mixing vane in Plus7 fuel assembly has been optimized numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. Standard $k-{\epsilon}$ model is used as a turbulence closure. The Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of friction loss. Bend angle and base length of mixing vane are selected as design variables. Thermal-hydraulic performances for different shapes of mixing vane have been discussed, and optimum shape has been obtained as a function of weighting factor in the objective function.

핵연료 봉다발내 비틀린 혼합날개의 형상최적설계 (Shape Optimization of A Twist Mixing Vane in Nuclear Fuel Assembly)

  • 정상호;김광용
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.7-13
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of inverse of heat transfer rate and friction loss. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

핵연료 봉다발내 Y 혼합날개의 형상최적설계 (SHAPE OPTIMIZATION OF A Y-MIXING VANE IN NUCLEAR FUEL ASSEMBLY)

  • 정상호;김광용;김강훈;박성규
    • 한국전산유체공학회지
    • /
    • 제14권2호
    • /
    • pp.1-8
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane taken tolerance into consideration by using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of pressure drop. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

Vane-type Static Mixer에 의한 디젤차량 배기관 내의 유동 특성에 관한 연구 (Numerical Study on the Flow Characteristics with a Vane-type Static Mixer in the Diesel Exhaust Systems)

  • 강경남;김만영
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.36-43
    • /
    • 2012
  • In this work the mixing and flow characteristics of a vane-type static mixer were investigated numerically for the reduction of NOx in the SCR-system of the diesel engines. The mixer was located in the 57 times pipe diameter away from the inlet. The analysis were performed by changing such various parameters as vane shape, angles, blockage ratio and location of the vane. The flow structure through the mixer was characterized by uniformity index and pressure drop. The results show that uniformity index and pressure coefficient are substantially influenced by the vane shape, angle, blockage ratio and position of the vane of the mixer.

Influence of guide vane shape on the performance and internal flow of a cross flow wind turbine

  • Son, Sung-Woo;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.163-169
    • /
    • 2013
  • In order to make the vertical-axis cross flow wind turbine commercially feasible, a guide vane is adopted and the effect of the guide vane shape is examined in order to improve the wind turbine performance. CFD analysis on the performance and internal flow of the turbine is carried out for the wind turbine model. The result shows that when the guide nozzle is installed, almost over two times of power coefficient are achieved in comparison with the case of no guide nozzle installation. The guide nozzle acts as a role of suppressing the flow resistance at the blade passage, which is found when the guide nozzle is installed. Moreover, in this study, two kinds of the guide vane with a straight type and a curved type are adopted and compared. The curved guide vane nozzle produces higher power coefficient in comparison with that of straight guide vane nozzle.

성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향 (Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System)

  • 김덕진;이지근
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

역설계 방법을 적용한 사류펌프의 임펠러 및 디퓨저 설계 (Design of Impeller and Diffuser for Mixed Flow Pump with Inverse Design Method)

  • 이경용;최영석;김준호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1322-1325
    • /
    • 2009
  • The impeller and vane diffuser for the mixed flow pump(NS550) was designed by using meridional selection program and inverse design method. We decided the meridional shape of the impeller from the meridional design parameter, such as the specific speed and maximum diameter at the impeller exit. The meridional shape of vane diffuser was set from the impeller shape, distribution of cross sectional area and maximum diffuser diameter. The angle of impeller blade and diffuser vane was designed by using inverse design method. The predicted overall performance by using commercial CFD code(ANSYS CFX-11) shown good agreement with design goals.

  • PDF

Application and optimal design of the bionic guide vane to improve the safety serve performances of the reactor coolant pump

  • Liu, Haoran;Wang, Xiaofang;Lu, Yeming;Yan, Yongqi;Zhao, Wei;Wu, Xiaocui;Zhang, Zhigang
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2491-2509
    • /
    • 2022
  • As an important device in the nuclear island, the nuclear coolant pump can continuously provide power for medium circulation. The vane is one of the stationary parts in the nuclear coolant pump, which is installed between the impeller and the casing. The shape of the vane plays a significant role in the pump's overall performance and stability which are the important indicators during the safety serve process. Hence, the bionic concept is firstly applied into the design process of the vane to improve the performance of the nuclear coolant pump. Taking the scaled high-performance hydraulic model (on a scale of 1:2.5) of the coolant pump as the reference, a united bionic design approach is proposed for the unique structure of the guide vane of the nuclear coolant pump. Then, a new optimization design platform is established to output the optimal bionic vane. Finally, the comparative results and the corresponding mechanism are analyzed. The conclusions can be gotten as: (1) four parameters are introduced to configure the shape of the bionic blade, the significance of each parameter is herein demonstrated; (2) the optimal bionic vane is successfully obtained by the optimization design platform, the efficiency performance and the head performance of which can be improved by 1.6% and 1.27% respectively; (3) when compared to the original vane, the optimized bionic vane can improve the inner flow characteristics, namely, it can reduce the flow loss and decrease the pressure pulsation amplitude; (4) through the mechanism analysis, it can be found out that the bionic structure can induce the spanwise velocity and the vortices, which can reduce drag and suppress the boundary layer separation.

유압 베인 펌프의 캠 링 변형에 관한 연구 (A Study on the Cam Ring Deformation in a Balanced Type Vane Pump)

  • 한동철;조명래;양광식;박제승
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.206-211
    • /
    • 1998
  • This paper presents the deformation characteristics of cam ring in a balanced type vane pump. Cam ring is operated in the condition of high pressure. Therefore the local deformation of cam ring affects the characteristics of compression, vane motion and noise and vibration. We analyzed the deformation of cam ring in three types by using the finite element method. As results of analysis, deformed shape of cam ring and the effects of deformation on the compression are presented.

  • PDF

유압 베인 펌프에서의 탄성유체윤활 해석 (Elastohydrodynamic Lubrication Analysis in Hydraulic Vane Pump)

  • 박태조
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권3호
    • /
    • pp.7-13
    • /
    • 2013
  • Hydraulic vane pumps are widely used in various hydraulic systems because of its compactness and light weight. It is well known that the vanes and cam ring are separated by very thin liquid films which result in the EHL state. Contrary to the case of cylindrical roller bearings, the inlet and side boundary pressures are much higher than the atmospheric pressure. In this paper, a numerical solution of the EHL of finite line contacts between the cam ring and vane tip with profiled ends is presented. Using a finite difference method with non-uniform grids and the Newton-Raphson method, converged solutions are obtained for moderate load and material parameters. The EHL pressure distribution and film shape are considerably affected by pump delivery pressure and the side boundary condition applied. Both the maximum pressure and the minimum film thickness always occurred near the edge regions. The present results can be used in the design of optimum vane profile in hydraulic vane pump.