• Title/Summary/Keyword: Vanadium oxide

Search Result 165, Processing Time 0.026 seconds

Effect of Oxygen Partial Pressure on the Structural, Optical and Electrical Properties of Sputter-deposited Vanadium Oxide Thin Films (스퍼터링으로 증착된 바나듐 산화막의 구조적, 광학적, 전기적 특성에 미치는 산소 분압의 효과)

  • 최복길;최창규;권광호;김성진;이규대
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.1008-1015
    • /
    • 2001
  • Thin films of vanadium oxide(VO$\_$x/) have been deposited by r.f. magnetron sputtering from V$_2$O$\_$5/ target in gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio is changed from 0% to 8%. Crystal structure, chemical composition, bonding, optical and electrical properties of films sputter-deposited under different oxygen gas pressures are characterized through XPS, AES, RBS, FTIR, optical absorption and electrical conductivity measurements. V$_2$O$\_$5/ and lower oxides co-exist in sputter-deposited films and as the oxygen partial pressure is increased the films become more stoichiometric V$_2$O$\_$5/. The increase of O/V ratio with increasing oxygen gas pressure is attributed to the partial filling of oxygen vacancies through diffusion. It is observed that the oxygen atoms located on the V-O plane of V$_2$O$\_$5/ layer participate more readily in the oxidation process. With increasing oxygen gas pressure indirect and direct optical band gaps are increased, but thermal activation energies are decreased.

  • PDF

Electrical properties of sputtered vanadium oxide thin films in Al/$VO_x$/Al device structure (Al/$VO_x$/Al 소자 구조에서 스퍼터된 바나듐 산화막의 전기적 특성)

  • 박재홍;최용남;최복길;최창규;김성진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.460-463
    • /
    • 2000
  • The current-voltage characteristics of the sandwich system at different annealing temperatures and different bias voltages have been studied. In order to prepare the Al/V$O_X$/Al sandwich devices structure, thin films of vanadium oxide(V$O_X$) was deposited by r.f. magnetron sputtering from $V_2$$O_5$ target in 10% gas mixture of argon and oxygen, and annealed during lhour at different temperatures in vacuum. Crystall structure, surface morphology, and thickness of films were characterized through XRD, SEM and I-V characteristics were measured by electrometer. The films prepared below 20$0^{\circ}C$ were amorphous, and those prepared above 300 $^{\circ}C$were polycrystalline. At low fields electron injected to conduction band of vanadium oxide and formed space charge, current was limited by trap. Conduction mechanism at mid fields due to Schottky emission, while at high fields it changed to Fowler-Nordheim tunneling effects.

  • PDF

Effects of Vacuum Annealing on the Electrical Properties of Sputtered Vanadium Oxide Thin Films (스퍼터된 바나듐 산화막의 전기적 특성에 미치는 진공 어닐링의 효과)

  • Hwang, In-Soo;Lee, Seung-Chul;Choi, Bok-Gil;Choi, Chang-Kyu;Kim, Nam-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.435-438
    • /
    • 2003
  • The effects of oxygen partial pressure and vacuum annealing on the electrical properties of sputtered vanadium oxide($VO_x$) thin films were investigated. The thin films were prepared by r.f. magnetron sputtering from $V_2O_5$ target in a gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio of 0% and 8% is adopted. Electrical properties of films sputter-deposited under different oxygen gas pressures and in situ annealed in vacuum at $400^{\circ}C$ for 1h and 4h are characterized through electrical conductivity measurements. I-V characteristics were distinguished between linear and nonlinear region. In the low field region the conduction is due to Schottky emission, while at high fields it changes to Fowler-Nordheim tunneling type conduction. The conductivity measurements have shown an Arrhenius dependence of the conductivity on the temperature.

  • PDF

Solid-State $^{51}V$ NMR and Infrared Spectroscopic Study of Vanadium Oxide Supported on $TiO_2-ZrO_2$

  • Park, Eun Hui;Lee, Man Ho;Son, Jong Rak
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.913-918
    • /
    • 2000
  • Vanadium oxide catalyst supported on TiO2-ZrO2 has been prepared by adding Ti(OH)4-Zr(OH)4 powder to an aqueous solution of ammonium metavanadate followed by drying and calcining at high temperatures. The char-acterization ofthe prepared catalysts was performed using solid-state 51V NMR and FTIR.In thecase ofcalci-nation temperature at 773 K, vanadium oxide was in a highly dispersed state for the samples containing low loading V2O5 below 25 wt %, but for samplescontaining high loading V2O5 equal to or above 25 wt %, vana-dium oxidewas well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of TiO2-ZrO2.The ZrV2O7 compound was formed through the reactionof V2O5 and ZrO2 at 773-973 K, where-as the V3Ti6O17 compound was formedthrough the reaction of V2O5 and TiO2 at 973-1073 K. The V3Ti6O17 compound decomposed to V2O5 and TiO2 at 1173 K, which were confirmed by FTIR and 51V NMR.

Characteristics of Vanadium Oxide Grown by Atomic Layer Deposition for Hole Carrier Selective Contacts Si Solar Cells (실리콘 전하선택접합 태양전지 적용을 위한 원자층 증착법으로 증착된 VOx 박막의 특성)

  • Park, Jihye;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.660-665
    • /
    • 2020
  • Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 µs after post-deposition annealing (PDA) at 100 ℃. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 ℃ the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 ℃, and 5:5 for annealing at 300 ℃. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.

Solid state MAS NMR Investigation on the Local Structures of xV2O5-B2O3-yNa2O Glasses

  • Kim, Sun-Ha;Han, Oc-Hee;Kang, Jae-Pil;Song, Seung-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.608-612
    • /
    • 2009
  • The local structures of the boron and vanadium sites in the ternary glass $xV_2O_5-B_2O_3-yNa_2O$ were studied by $^{11}B\;and\;^{51}V$ magic angle spinning (MAS) nuclear magnetic resonance (NMR). With increasing x, the mole ratios of the $BO_3\;and\;BO_4$ structures were enhanced, as were the quadrupole asymmetry parameters for the $BO_3$ structures, while the quadrupole coupling constants for the sites were reduced. However, the opposite trends were observed with increasing y, implying that $V_2O_5$ and $Na_2O$ play opposite roles. The $VO_4,\;VO_5\;and\;VO_6$ structures with all oxygens bonded to the vanadium neighbors were identified. Vanadiums bonded to the greater number of oxygens were more populated at higher contents of $Na_2O\;and\;V_2O_5$. In addition, the $VO_4$ structures with at least one oxygen bonded to boron instead of vanadium were detected at low $Na_2O$ contents. The electron densities of various vanadium oxide structures were affected by the weight densities and vanadium ion densities. The $VO_4$ structures were more likely to be vanadium oxide structures right next to $V4^{+}$ ions.

CLUSTER P-V CONTAINING SYSTEMS FOR THE DECREASING OF POLYMERIC MATERIAL COMBUSTION

  • Kodolov, V.I.;Bystrov, S.G.;Mikhailov, V.I.;Lipanov, A.M.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.104-111
    • /
    • 1997
  • Cluster systems are microcrystals of vanadiumoxided compounds such as Barium, Calcium or Sodium Metavanadates or Sodium Vanadium Bronze which are distributed into dimethyl- or diethylphosphites or microcrystals of vanadium oxides, for instance, vanadium oxide (+3), distributed into the methylphosphonic acid melted. During the interaction of vanadium compounds with the correspondent phosphororganic substances biue viscous liquids are formed. These liquids have paramagnetic properties. According to the UV and IR spectroscopic investigations as well as the results of EPR spectra the substances obtained consist of the nucleus containing 6 to 12 of vanadium atoms and the shell including ligands which are molecules of phosphites or methylphosphonic acid. Here every atom of vanadium interacts with four of phosphorus containing molecules. Sizes of the particles in these systems donot exceed 200 nm. Introduction of cluster systems (0,1 -0,3 % vanadium) into epoxy compositions before the introduction of curing agent - polyethylenepolyamine 6 -8 % leads to the acceleration of composition crosslinking and to the combustion decreasing: 1) Oxygen Index grows to 35: 2)mass losses during combustion decrease to 1-2%, 3) combustion time does not exceed 1 s; 4) the intumescence of material sample is being observed during the burner action as well as the foam coke formation.

  • PDF

Improvement of hole transport from p-Si with interfacial layers for silicon solar cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.239.2-239.2
    • /
    • 2016
  • Numerous studies and approaches have been performed for solar cells to improve their photoelectric conversion efficiencies. Among them, the study for electrode containing transparent conducting oxide (TCO) layers is one of issues as well as for the cell structure based on band theory. In this study, we focused on an interfacial layer between p-type silicon and indium tin oxide (ITO) well-known as TCO materials. According to current-voltage characteristics for the sample with the interfacial layers, the improvement of band alignment between p-type silicon and ITO was observed, and their ohmic properties were enhanced in the proper condition of deposition. To investigate cause of this improvement, spectroscopic ellipsometry and ultraviolet photoelectron spectroscopy were utilized. Using these techniques, band alignment and defect in the band gap were examined. The major materials of the interfacial layer are vanadium oxide and tungsten oxide, which are notable as a hole transfer layer in the organic solar cells. Finally, the interfacial layer was applied to silicon solar cells to see the actual behavior of carriers in the solar cells. In the case of vanadium oxide, we found 10% of improvement of photoelectric conversion efficiencies, compared to solar cells without interfacial layers.

  • PDF

Phase Changes of Vanadium Oxide Thin Films (산화 바나듐 박막의 상변화)

  • 선우진호;신인하;고경현;안재환
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.6
    • /
    • pp.293-298
    • /
    • 1992
  • Various vanadium-oxide thin films were deposited by e-beam and thermal evaporation of V2O5, V2O3, and VO2 powders. Films with thickness of $2000\AA$ were subjected to annealing at $300^{\circ}C$~$450^{\circ}C$ in N2 atmosphere for the crystallization and desification purposes. For the films deposited from V2O5 and VO2 sources, sources, Magneli (VnO2n-1$ 4\leq$ $n\leq$ 8) and VO2 phase appeared at $300^{\circ}C$, respectively, but VO2 phase also transformed into Magneli phase at $450^{\circ}C$ by severe reduction. On the contrary, VO2/VO mixed phases resulted from congruent evaporation of V2O3 unchanged after the same annealing treatment due to the balanced reduction and oxidation of VO2 and VO whcih have different equilibrium O2 pressures. It is suggested that the annealing in the controlled oxidation atmosphere or the deposition using mixed oxide sources are necessary to get the film containing VO2 phase.

  • PDF

A Study on the Electronic Structures of Li Intercalated Vanadium Sulfide and Oxide (Li의 첨가에 따른 Vanadium의 유화물과 산화물의 전자상태계산에 관한 연구)

  • Jung, Hyun-Chul;Kim, Hui-Jin;Won, Dae-Hee;Yoon, Dong-Joo;Kim, Yang-Soo;Kim, Byung-Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.604-608
    • /
    • 2008
  • The layered compounds vanadium disulfide($VS_2$) and vanadium dioxide($VO_2$) intercalated with Li are investigated for using the Discrete Variational $(DV)-X{\alpha}$ molecular orbital method. The chemical bonding properties of the atoms were examined by bond overlap population of electronic states. The plot of density of states supports the covalent bonding properties by showing the overlap between the atoms. There is a strong tendency of covalent bonding between V-S and V-O. The intensity of covalent bonding of $VS_2$ is stronger than $VO_2$. The net charge of $LiVO_2$ is higher than that of $LiVS_2$. This results of the calculation of $VO_2$ and $VS_2$ indicate that $(DV)-X{\alpha}$ method can be widely applied in the new practical materials.