• Title/Summary/Keyword: Valveless pump

Search Result 23, Processing Time 0.021 seconds

Design of Multi-Phase Shift Controller for Valveless PZT Pump (밸브리스 압전펌프 연동구동 제어기 설계)

  • 조정대;박경민;노종호;함영복;유진산
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1282-1285
    • /
    • 2004
  • The high voltage driving system with multi-phase shifter including piezoelectric actuators comprised a driving power unit for outputting the driving power by converting input alternate current into direct current, a frequency shifting unit for supplying the direct current power and shifting or generating a frequency, a high-voltage amplification unit for amplifying the input signal outputted from the driving power unit and the frequency shifting unit into a high-voltage signal, and a phase shifting unit for shifting the phase difference of the amplified signal applied to the high-voltage amplification unit and driving plural piezoelectric actuators sequentially. The results that the operating voltage was stable, the voltage loss ratio was low and the response velocity was fast could be obtained. An experiment on performance of the high voltage driving system with multi-phase shifter designed and manufactured as above described was conducted by using a piezoelectric pump having 3 sheets of round unimorph piezoelectric actuators laminated respectively in a rectangular case. It sucks any fluid by causing the first piezoelectric actuator to shift from the inlet porter side, the phase delay of 60$^{\circ}$ causes the second piezoelectric actuator to begin to shift, and the phase delay of 120$^{\circ}$ causes the third piezoelectric actuator to begin to shift. As a result of measuring each change in the outlet flow rate of the piezoelectric pump, it was shown that the frequency-flow rate characteristic, the voltage-flow characteristic, and the load pressure-flow rate characteristic were improved.

  • PDF

Three Dimensional Electro-Fluid-Structural Interaction Simulation for Pumping Performance Evaluation of a Valveless Micropump (무밸브 마이크로 펌프의 성능평가를 위한 3차원 전기-유체-구조 상호작용 해석)

  • Pham, My;Phan, Van Phuoc;Han, Cheol-Heui;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.744-750
    • /
    • 2009
  • In this study, the pumping performance of a piezoelectric valveless micropump is simulated. The micropump, which was developed in the previous work, is composed of a four-layer lightweight piezocomposite actuator, a polydimethylsiloxane (PDMS) pump chamber, and two diffusers. The piezoelectric domain, the fluid domain and the structural domain are coupled in the three-dimensional simulation. We used ANSYS for the piezoelectric and structural domains and ANSYS CFX for the fluid domain. The effects of driven frequency on the flow rate have been investigated by simulating the flow characteristics for 10 Hz and 40 Hz driven frequencies. The flow rates with respect to driven frequencies up to 300 Hz have been calculated.

CFD Analysis on the Flow Characteristics of Diffuser/Nozzles for Micro-pumps (마이크로 펌프용 디퓨져/노즐의 유동 특성에 관한 CFD 해석)

  • Kim Donghwan;Han Dong-Seok;Jeong Siyoung;Hur Nahmkeon;Yoon Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.544-551
    • /
    • 2005
  • The flow characteristics have been numerically investigated for various shapes of the diffuser/nozzles which are used for a valveless micro-pump. The important parameters considered in this study are the throat width ($15\~120\mu$m), the taper angle ($3.15\~25.2^{\circ}$), and the diffuser length ( $600\~4,800\mu$m), and the size of the middle chamber ($1\~16mm^2$). To find the optimal values for these parameters, steady state calculations have been performed assuming the constant pressure difference between the inlet and exit of the flow For the taper angle and the throat width, it is found that there exists an optimum at which the net flow rate is the greatest. The optimal taper angle is in the range of $10\~20^{\circ}$ for all the pressure differences; and the throat width indicates an optimal value near $75\mu$m for the case of 35 kPa pressure difference. The net flow rate is also influenced by the size of the middle chamber. With decreasing chamber size, the net flow rate is reduced because of the interference between two streams flowing into the middle chamber. The unsteady pulsating flow characteristics for a micro-pump with a given diffuser/nozzle shape have been also investigated to show the validity of the steady state parametric study.