• Title/Summary/Keyword: Valve-effect

Search Result 725, Processing Time 0.075 seconds

Effects of the Mitral Valve Replacement with Preservation of Posterior Mitral Leaflet and Chorda Tendinae for Mitral Valvular Disease (승모판막질환에서 승모판 대치술시 승모판 후엽 및 건삭 보존의 효과)

  • Jo, Gang-Rae;Kim, Jong-Won
    • Journal of Chest Surgery
    • /
    • v.23 no.3
    • /
    • pp.488-500
    • /
    • 1990
  • Author compared the effect of surgical methods between 40 patients who received mitral valve replacement with complete excision of the mitral valve[resected group] and 41 patients who received mitral valve replacement with preservation of posterior chorda tendineae and posterior mitral leaflet[preserved group] from 1985. 2. to 1989. 4. at cardiothoracic department of Pusan National University Hospital.v 1. There was no significant difference between the preserved group and resected group in cardiopulmonary bypass time and aortic cross clamping time and NYHA classification. 2. In preserved group of Mitral stenosis and Mitral regurgitation, the left ventricular functions were much improved after mitral valve replacement than resected group, but there was not so difference between the preserved group and reserved group in Mitral steno-regurgitation. 3. There were remarkable decrease in complication rate in preserved group compared to resected group. And also the death rates were remarkably decreased in preserved group which was 4.9% compared to resected group which was 17.5%. As the preservation of the posterior mitral leaflet and chorda tendineae during mitral valve replacement in mitral valve disease showed significantly improved effects in the maintaining of left ventricular function and reducing the postoperative complication, I assume the preservation of posterior mitral leaflet and chordae during mitral valve replacement will bring better result.

  • PDF

Analysis of Flow Characteristics and Optimum Design of a Buckling Microvalve Using the Finite Element Method (유한요소법을 이용한 버클링 마이크로 밸브의 유동특성 해석 및 최적 설계)

  • Kim, Jae-Min;Lee, Jong-Choon;Chung, Gwiy-Sang;Yoon, Suk-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.383-386
    • /
    • 2002
  • This paper reports on the fluid flow simulation results of an active microvalve. The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed microvalve using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a small piezoelectric actuator. It is confirmed that the complete laminar flow and the lowest flow leakage are strongly depend on the valve seat geometry. In addition, turbulent flow was occurs in valve outlet according to increase seat dimension, height and inlet pressure. From this, we was deducts the optimum geometry of the valve seat and diaphragm deflection that have an great influence fluid flow in microvalve. Thus, it is expected that our simulation results would be apply for constructing integrated chemical analyzing system or drug delivery system.

  • PDF

The Realization of High Performance in a Hydrogen-Fueled Engine with External Mixture by Retarding Valve Timing and Super Charging (밸브 타이밍 지각과 과급에 의한 흡기관 분사식 수소기관의 고성능 실현)

  • Lee, Kwang-Ju;Hur, Sang-Hoon;Lee, Jong-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.464-470
    • /
    • 2009
  • In order to analysis the possibility of high expansion and performance without backfire in a hydrogenfueled engine using external mixture injection, combustion characteristics and performance enhancement were analyzed in terms of retarding valve timing and increasing the boosting pressure. As the results, it was found that thermal efficiency increased by retarding intake valve timing with the same level of supplied energy is over 6.6% by the effect of high expansion including effect of combustion enhancement due to supercharging. It was also shown that the achievement of high power (equal to that of a gasoline engine), low brake specific fuel consumption and low emission (NOx of less than 16 ppm) without backfire in a hydrogen-fueled engine is possible around a boosting pressure of 1.5 bar, intake valve opening time of TDC and $\Phi$=0.35 in fuel-air equivalence ratio.

The Development of Rotoless Electronic Circulating Pump System with Internal Three Way Valve for Boiler - Objective for the 1st Year : Development of New Housing with Internal Three Way Valve - (보일러용 3way valve내장형 rotoless 전자식순환펌프 시스템의 개발 - 1차년도 목표 : 3way valve 내장형 하우징의 개발 -)

  • Han, J.W.;Kum, S.M.;Ryu, B.H.;Lee, C.E.;Ohu, S.C.;Yim, J.S.
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.97-112
    • /
    • 1996
  • The purpose of research is to complement the circulating pump of gas boiler for the domestic and to develop a pump housing with internal three way valve: Housing and three way valve have been apart in the existing pump system. Based on the experimental result on can-typed circulating pump with existing housing, a new housing with internal three way valve was designed and manufactured. The performance of can-typed circulating pump with the new housing, and the performance of circulating pump of boiler system were tested. As a result ot the test, the new housing with internal three way valve has been excellent in respect of pump performance, weight and manufacturing cost. So It is expected to have an effect of import substitution.

  • PDF

Bubble formation in globe valve and flow characteristics of partially filled pipe water flow

  • Nguyen, Quang Khai;Jung, Kwang Hyo;Lee, Gang Nam;Park, Hyun Jung;To, Peter;Suh, Sung Bu;Lee, Jaeyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.554-565
    • /
    • 2021
  • Air bubble entrainment is a phenomenon that can significantly reduce the efficiency of liquid motion in piping systems. In the present study, the bubble formation mechanism in a globe valve with 90% water fraction flow is explained by visualization study and pressure oscillation analysis. The shadowgraph imaging technique is applied to illustrate the unsteady flow inside the transparent valve. This helps to study the effect of bubbles induced by the globe valve on pressure distribution and valve flow coefficient. International Society of Automation (ISA) recommends locations for measuring pressure drop of the valve to determine its flow coefficient. This paper presents the comparison of the pressures at different locations along with the upstream and the downstream of the valve with the values at recommended positions by the ISA standard. The results show that in partially filled pipe flow, the discrepancies in pressure between different measurement locations in the valve downstream are significant at valve openings less than 30%. The aerated flow induces the oscillation in pressure and flow rate, which leads to the fluctuation in the flow coefficient of the valve. The flow coefficients have a linear relationship with the Reynolds number. For the same increase of Reynolds number, the flow coefficients grow faster with larger valve openings and level off at the opening of 50%.

Effect of Command Signal of Flow Control Valve on Performance of Underwater Discharge System using Linear Pump - Numerical Investigation (유량제어밸브 인가신호 형태가 선형펌프 방식 수중사출 시스템의 성능에 미치는 영향에 관한 수치적 연구)

  • Lee, Sunjoo;Choi, Wonshik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.219-227
    • /
    • 2021
  • In the present study, the effect of command signals of the flow control valve on performance of underwater discharge systems using a linear pump was investigated numerically. For that, the improved mathematical model was developed. The improvement is to calculate the flow leakage between the water cylinder and the piston. Also the model of the hydraulic cylinder is simplified. To validate the improved model, calculation results were compared with experiment results. The results of the study is as follows: Double ramp command signals of the flow control valve had an advantage over single ramp signals. The parametric study on the effect of double ramp command signals on performance of the system was performed. In case of using double ramp signals, the maximum acceleration of the underwater vehicle was reduced by approximately 50 % compared with using single ramp signals.

A Study for Automatic Temperature Control of the Heating-Cooling System with Heat Pump (히트펌프 냉·난방 시스템의 온도 자동제어에 관한 연구)

  • Koo, Chang-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.4
    • /
    • pp.143-149
    • /
    • 2011
  • The experiment has been investigated the room temperature change under adjusting 4-way valve which was installed for cooling and heating switch. Beside, the temperature of heat pump was controlled automatically for autonomously adjusting temperature and maintaining a constant room temperature. As results, Inlet & outlet temperature differences of compressor are $95^{\circ}C$ in cooling condition and $57^{\circ}C$ in heating condition. Therefore, Compression efficiency of cooling effect is higher than heating effect. In addition, Heat exchange effect of Cooling system condition is higher than heating system. This results can be used for studying about automatic temperature control of cooling and heating system with heat pump and 4way valve.

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(5)-Effect of Evaluation Position (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(5) - 평가위치의 영향)

  • Cho, Siehyung;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • This paper is the fifth investigation on the methods of evaluating flow characteristics in a steady flow bench. In previous studies, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation may lead to serious problems. In addition, though the velocity profiles were improved as the measuring position went downstream, the distributions were far from ideal regardless of the valve angle and evaluation position. The eccentricities were also not sufficiently small to disregard the effect on impulse swirl meter (ISM) measurement. Therefore, the effect of these distribution and eccentricity changes according to the positions needs to be analyzed to discuss the method of flow characteristics estimation. In this context, the effects of evaluation position on the steady flow characteristics were studied. For this purpose, the swirl coefficient and swirl ratio were assessed and compared via measurement of the conventional ISM and calculation based on the velocity by particle image velocimetry(PIV) from 1.75B, 1.75 times bore position apart from the cylinder head, to the 6.00B position. The results show that the swirl coefficients by ISM strictly decrease and the curves as a function of the valve lift become smooth and linear as the measuring position goes downstream. However, the values through the calculation based on the PIV are higher at the farther position due to the approach of the tangential velocity profile to ideal. In addition, there exists an offset effect between the velocity distribution and eccentricity in the low valve lift range when the coefficients are estimated based on the swirl center. Finally, the curve of the swirl ratio by ISM and by PIV evaluation as a function the measuring position intersect around 5.00B plane except at $26^{\circ}$ valve angle.

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.

The Analysis and Control of Compressed Gas Discharging System (압축가스 방출 유압시스템 해석 및 제어)

  • 장웅락;김정관;한명철;정찬희;박인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.458-462
    • /
    • 2004
  • The hydraulic system for discharging compressed gas is composed of compressor tank, proportional flow control servo valve, expulsion spool valve and discharging tube. Purpose of this study is to control of expulsion spool valve. First, we analyzed the hydraulic system. The flow control servo valve is modeled as a 2nd order transfer function and friction force of the expulsion spool valve is modeled as nonlinear model with stribeck effect. However, it is difficult to include the flow reaction force in modeling. So, we exchanged from the simplified flow reaction force of the compressed gas affection into the flow analysis code written in FORTRAN code. Our simulation of the oil pressure system for discharging gas used MATLAB/Simulink. So, we realized 'Level -2 S-Function Fortran' to cooperate for MATLAB/Simulink and FORTRAN code. PD controller is selected to control in this system. Simulation results show that with given conditions the controllers give a good tracking performance.

  • PDF