• Title/Summary/Keyword: Valve mode

Search Result 217, Processing Time 0.029 seconds

Effect of the Intake Valve Opening Timings and Fuel Injection Pressures on the Exhaust Emission Characteristics of a Gasoline Engine at Part Load Condition

  • Lee, Hyung-Min;Jeong, Yeon-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.317-322
    • /
    • 2011
  • This work has investigated the exhaust emissions such as Total Hydrocarbon (THC), Nitrogen Oxides(NOx), and Particulate Matter (PM) characteristics emitted from the tail-pipe of a continuously variable valve timing (CVVT) gasoline-fueled engine with different intake valve opening timings and injection pressures at the part load condition. Valve overlap period was varied from $40^{\circ}CA$ to $10^{\circ}CA$ and fuel injection pressure was increased from 3.5 bar to 5.0 bar. THC and NOx emissions decreased as intake valve opening timing was advanced regardless of fuel injection pressure. When the fuel was injected with the condition of 5.0 bar at all of valve overlap ranges, THC levels were reduced by 55%. NOx concentrations were diminished about 75% as valve overlap increased. PM size distributions were analyzed as bi-modal type of the nucleation and accumulation mode. Comparing with fuel injection pressures, PM emission levels were decreased at high pressure injection of 5.0 bar condition.

Research on characteristic analysis and reliability improvement of check valve for turbo compressor (터보 압축기용 체크 밸브의 특성 분석과 신뢰성 개선)

  • Kim, Kyung-Soo;Kang, Bo-Sik;Lee, Seung-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1381-1386
    • /
    • 2008
  • In this study, we studied failure cause of check valve through analysing characteristic of it used in turbo compressor. We researched how to improve to reduce chaterring occurrence which is cause of main failure mode and suggested how to improve reliability of check valve through it.

  • PDF

NONLINEAR MODEL-BASED CONTROL OF VANE TYPE CONTINUOUS VARIABLE VALVE TIMING SYSTEM

  • Son, M.;Lee, M.;Lee, K.;SunWoo, M.;Lee, S.;Lee, C.;Kim, W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.555-562
    • /
    • 2007
  • The Variable Valve Timing(VVT) system for high performance is a key technology used in newly developed engines. The system realizes higher torque, better fuel economy, and lower emissions by allowing an additional degree of freedom in valve timing during engine operation. In this study, a model-based control method is proposed to enable a fast and precise VVT control system that is robust with respect to manufacturing tolerances and aging. The VVT system is modeled by a third-order nonlinear state equation intended to account for nonlinearities of the system. Based on the model, a controller is designed for position control of the VVT system. The sliding mode theory is applied to controller design to overcome model uncertainties and unknown disturbances. The experimental results suggest that the proposed sliding mode controller is capable of improving tracking performance. In addition, the sliding mode controller is robust to battery voltage disturbance.

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스템의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Chanduk;Park Jong-Ha;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.219-224
    • /
    • 2005
  • In order to investigate transient behaviour of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. For transient simulation of the main engine system, the ICV(Inter-Component Volume) method was applied. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1Km, flight Mach number 0.1 and maximum engine rpm.

  • PDF

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스뎀의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Changduk;Park Jongha;Yang Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • In order to investigate transient behavior, of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1km, flight Mach number 0.1 and maximum engine rpm.

Transient analysis of lubrication with a squeeze film effect due to the loading rate at the interface of a motor operated valve assembly in nuclear power plants

  • Jaehyung Kim;Sang Hyuk Lee;Sang Kyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2905-2918
    • /
    • 2023
  • The valve assembly used in nuclear power plants is important safety-related equipment. In the new standard, the physical attributes are measured using a valve diagnosis test, which is used in the expansion to other non-tested valves using a quantitative test-basis methodology. With a motor-operated actuator, the state of stem's lubrication is related to physical attributes such as the stem factor and the friction coefficient. This study analyzed the numerical transient of fluid and solid lubrication with a squeeze film effect due to the loading rate on the stem and the stem nut using the experimental data. The differential equation that governs the motion mechanism of the stem and stem nut is established and analyzed. The flow rate, the fluid and the solid contact forces are calculated with the friction coefficient. Finally, we found that a change in the friction coefficient results from a change of the shear force in the solid contact mode during the interchange process between the solid contact mode and the fluid contact mode. The qualitative understanding of the squeeze film effect is expanded quantitatively for forces, thread surface distance, velocity, and acceleration, with consideration of the metal solid contact and fluid contact.

Position Control of a 3 dof Closed -loop Cylinder System Using ER Valve Actuators

  • Park, Seug-Bok;Cho, Myung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.48-56
    • /
    • 2001
  • This paper presents the position tracking control of a closed-loop cylinder system using electro-rheological (ER) valve actuators. After manufacturing three sets of cylindrical ER valves on the basis of Bingham model of ER fluid, a 3 dof(degree-freedom) closed-loop cylinder system having the heave, roll and pitch motions is constructed. The governing equations of motion are derived using Lagrange's equation and a control model is formulated by considering nonlinear characteristics of the system, Sliding mode controllers are the designed for these ER valve actuators in order to achieve position tracking control. The effectiveness of trajectory tracking control performance of the proposed cylinder system is demonstrated through computer simulation and experimental implementation of the sliding mode controller.

  • PDF

Position Control of a 3 dof Closed-loop Cylinder System Using ER Valve Actuators (ER 밸브 작동기를 이용한 3자유도 폐회로 실린더 시스템의 위치제어)

  • 최승복;조명수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.165-173
    • /
    • 2000
  • This Paper presents the position tracking control of a closed-loop cylinder system using electro-rheological(ER) valve actuators. After manufacturing three sets of cylindrical ER valves on the basis of Bingham model of ER fluid, a 3 dof(degree-of-freedom) closed-loop cylinder system having the heave, roll and pitch motions is constructed. The governing equations of motion are derived using Lagrange's equation and a control model is formulated by considering nonlinear characteristics of the system. Sliding mode controllers are then designed fer these ER valve actuators in order to achieve position tracking control. The effectiveness of trajectory tracking control performance of the proposed cylinder system is demonstrated through computer simulation and experimental implementation of the sliding mode controller.

  • PDF

Vibration Reduction of Pump and Piping System (대형펌프 토출배관계에서 발생하는 진동 저감)

  • Bae, Chun-Hee;Won, Jong-Bum;Cho, Cheul-Whan;Kim, Soung-Hye;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.145-149
    • /
    • 2000
  • In this paper, Firstly, it is shown that the bending mode vibration of check valve is comparatively large because resonance. Secondly in order to decrese the bending mode vibration of check valve, some practical dynamic vibration absorber have been developed and its effectiveness is investigated as installing it at the check valve of piping system practically.

  • PDF

Abnormal Vibration of Turbine Control Valve due to Resonance (공진에 의한 터빈 Control Valve 이상 진동)

  • Koo, Jae-Raeyang;Kim, Sung-Hwi;Koo, Woo-Sik;Lee, Woo-Kwang;Kim, Yeon-Hwan;Hwang, Jae-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2100-2104
    • /
    • 2004
  • Amount of Electricity which product generator decide control valve at Turbine. Operating method of Control valve have two mode. First operating method is Partial Arc Admission, and second operating method is Full Arc Admission. Failure of Control Valve have on serious damage electricity lineage. In this Paper, We have investigated resonance that Control Valve spring casing.

  • PDF