• Title/Summary/Keyword: Valve coefficient

Search Result 268, Processing Time 0.022 seconds

A Evaluation Method of Operational Performance for Air-operated Gate Valve (공기구동 게이트밸브의 운전 성능평가 방법에 관한 연구)

  • Kim, Dae-Woong;Park, Sung-Keun;Kang, Shin-Cheul;Kim, Yang-Suk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • The valve performance has been evaluated from the theoretical equation based on design information such as packing thrust, spring preload and friction coefficient(${\mu}$). The accuracy of those data can be lower than that of vendor's initial design data. Especially, the friction coefficient can be degraded with time than the original condition and the valve performance calculated using the previous friction coefficient can not be available. Accordingly, this paper is describing a new performance evaluation method of valve based on diagnostic test data which are acquired from a site valve tested in static and dynamic conditions. Especially, this paper provides a new method using friction coefficient(${\mu}$) which is derived from the diagnostic test data acquired in the valve's design basis condition.

Effect of Reynolds Number on the Flow Characteristics of a Control Valve (제어밸브 유량특성에 레이놀즈 수가 미치는 영향)

  • Jung, Taekyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.995-999
    • /
    • 2017
  • The factors affecting the flow coefficient of a control valve were identified and analyzed. The flow coefficient of a control valve are affected by not only Reynolds Number but also the figure and the roughness of the inlet/outlet pipes. Therefore, the flow coefficient is not a constant value. For the purpose of use in the system such as LRE, requiring the exact flow-coefficient of a control valve, the flow-coefficient should be measured under similar Reynolds Number using the inlet and outlet pipes which have the same figure and roughness with a real system.

  • PDF

A Study on prediction of hydrodynamic torque coefficient of Concentric Type Butterfly Valve (중심형 버터 플라이 밸브의 유동 Torque 계수의 예측에 대한 연구)

  • Song, Xueguan;Oh, Seung-Hwan;Kang, Jung-Ho;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.41-46
    • /
    • 2007
  • Butterfly valves are commonly used as control valves in applications where the pressure drops required of the valves relatively low. As the shutoff valve (on/off service) or throttling valves (for flow or pressure control), the higher order and the better precision of butterfly valves are required. The it's more and more essential to know the flow characteristic around the valve. Due to the fast progress of the flow visualization and numerical technique, it becomes possible to observe the flows around a valve and to estimate the performance of a valve. Researching these results did not gave only access to understand the process of the valve flows at different valve opening angles, but also was made to determine the accuracy of the employed method. Furthermore, the results of the three-dimensional analysis can be used in the design of butterfly valve in the industry.

  • PDF

A Study on the Steady Intake Flow Characteristics of the Intake 3-Valve Cylinder Head (흡기3밸브 실린더 헤드의 흡입 정상유동 특성에 관한 연구)

  • Chung, Jae-Woo;Lee, Ki-Hyung;Kim, Woo-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.880-885
    • /
    • 2000
  • Flow patterns and steady flow characteristics of an intake 3valve cylinder head are not obviously declared. Thus, in the study, the characteristics and limitation of intake flow coefficient which applied to multi intake valve engine are introduced. The flow coefficient and tumble characteristics are investigated by means of the steady flow test and flow visualization method. As the results, it is found that the intake flow rate is dominated by effective valve open area. In addition, this paper shows that the mass flow rate of intake 3valve engine is greater than that of intake 2valve engine and tumble flow of intake 3valve engine is superior to that of intake 2valve engine.

A Numerical Study on the Flow of a Model Intake Port Using Low Reynolds Number (저 레이놀즈수 k-ε난류모형에 의하 축대칭 모형포트 유동의 수치해석적 연구)

  • Hong, Y.J.;Kim, C.S.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.26-37
    • /
    • 1994
  • In this study, flow of a model intake port/valve system is analyzed by using low Reynolds number $k-{\varepsilon}$ model. Discharge coefficient was obtained from computational results for the various cases of valve lifts. Discharge coefficient becomes maximum when the valve lift is 20mm, and does not increase or decrease in proportional to valve lift. Most of pressure drop and production of turbulent kinetic energy occur at the edge points of the valve and the valve seat Thus, in order to improve discharge coefficient, rounding of edge points in valve and valve seat is recommended. As valve lift is increased, the velocity of the intake jet in the valve passage decreases, and the direction of the jet is more inclined toward the valve seat.

  • PDF

An Experimental Study on a Flowfield Characteristics in a Throttle Valve of SI Engine (SI 엔진의 스로틀 밸브에서 유동장 특성에 대한 실험해석)

  • Kim, Sungcho;Kim, Cheol;Choi, Jonggeun;Lee, Seokjeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.967-974
    • /
    • 2001
  • Experimental investigations on the flow characteristics of downstream region of a butterfly valve, which is used in SI engine, have been conducted according to Reynolds number and valve angle. Measurement programs of the flowfield using x-type of hotwire anemometry include the mean and fluctuating velocity, turbulnet intensity, shear stress, power spectrum and pressure loss coefficient. Experimental results show that flow characteristics and independent of relatively high Reynolds number; 60,000 and 80,000. It is also seen that streamwise mean velocities have relatively large velocity gradient around the butterfly valve with increasing the valve opening angle and this trend appears even in the far downstream region. The distributions of turbulent intensity and shear stress show irregular behavior regardless of the valve opening angle and those of the case of the valve opening angle of 45°are the largest. The pressure loss coefficient of the body surface of the throttle valve increases mildly with the increase of Reynolds number and increases rapidly with the reduction of the valve opening angle.

A study on the flow characteristics in a plug valve with various port shapes (플러그 밸브의 포트형상 변화에 따른 유동특성 연구)

  • Choi, G.-W.;Park, G.-J.;Kim, Youn J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.259-264
    • /
    • 2000
  • The functions of the plug valve are the control of flow rate as well closing and opening pipe lines. Analyses on the flow characteristics in plug valve port are required to improve the performance and safety at severe operating conditions such as high-pressure and high-temperature. In this study, numerical analyses are carried out with varying the opening rate (fraction of the full open to close) of the valve and the shapes of valve Uk: straight, convex, concave and mixed shapes. The parameters influencing the flow characteristics in the valve are the discharge coefficient( $C_v$) and the resistance coefficient( K). Therefore, the distributions of static pressure, velocity vector and stream lines are investigated, and $C_v$ and K are calculated in each opening rate and shape. In case of full open, the static pressure passed through the valve port has almost been recovered. However, in case of other opening rates, the pressure does not permanently regained due to pressure drop leading to loss. This phenomenon in each shape of the valve shows the different behaviors. Calculation results show that the mixed shape has the best flow attribute.

  • PDF

A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II) (플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

A Study on the Flow Characteristics of Reed Valve with Variable Geometric Variations for Cryogenic Linear Expander (극저온 선형 팽창기용 리드밸브의 기하학적 형상변화에 따른 유동 특성 연구)

  • Jeong, Eun A;Kim, Ji U;Yeom, Han Kil;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.48-53
    • /
    • 2015
  • This paper deals with the flow characteristics of a reed valve analyzed using computational dynamics(CFD) for optimal design. The seat sizes of the valve are modeled asØ6[mm] and Ø8[mm] to compare the flow characteristics. The inlet boundary condition is entered at 10[kPa], 15[kPa], 20[kPa], and 30[kPa] and the outlet boundary condition is set to the atmospheric pressure. The flow coefficient(C) and pressure loss coefficient(K) are calculated from the results of flow analysis. From the analysis results, it was confirmed that the flow coefficient of a reed valve having a seat size of Ø6[mm] is greater than that having a seat size of Ø8[mm], and the coefficient of pressure loss of a valve with a seat size of Ø6[mm] is lower than the Ø8[mm] size valve.

Experiment and Flow Analysis of the Flow Coefficient Cv of a 1 inch Ball Valve for a Thermal Power Plant (화력발전소용 1인치 볼 밸브 유량계수 Cv에 관한 유동해석 및 실험에 관한 연구)

  • Kang, Chang-Won;Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.109-115
    • /
    • 2019
  • The purpose of this study was to analyze and test the flow rate of a 1-inch ball valve used in a thermal power plant. To identify the flow-rate characteristics, numerical analysis was conducted and an experimental apparatus of the valve flow rate coefficient was used to compare the flow coefficient Cv values. To determine the internal pressure distribution, the sites of opening ball valves and flow fields were investigated. In particular, a smaller the valve opening resulted in a more complicated the flow field of the ball. The valve flow characteristic test showed that the Cv value and flow rate increased with increasing valve-opening rate and the secondary function was performed. The pressure drop increased as the valve opening rate decreased. In addition, the experimental results for the flow analysis are similar to the numerical analysis results.