• Title/Summary/Keyword: Valve Loss Coefficient

Search Result 43, Processing Time 0.023 seconds

CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS (설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.170-176
    • /
    • 2009
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

  • PDF

CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS (설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

A Study on the Mixture Formation in a Fuel Injection System (연료분사장치의 혼합기 형성에 관한 연구)

  • ;;;Lee, K. H.;Seo, Y. H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2690-2698
    • /
    • 1995
  • Fuel atomization and mixture formation in an gasoline engine has influence on the engine performance and pollutant emission. The throttle valve installed in an intake system plays a greater role in control of mixture quantity in accordance with engine drive condition. In this study, the characteristics of secondary atomization developed at the downstream of the valves were observed using an image processing method. Two major kinds of valves, solid and perforated ones, are chosen in order to compare the valve performance with the experimental parameters of air flow rate, valve opening angle, and valve shapes. For the perforated valve, we can obtain the relatively small sized droplets, and nearly uniformed and dense distributed sprays with low loss coefficient than for the solid valve.

Study of Flow Control Range according to Valve Type (밸브 형식별 유량제어범위 결정에 관한 연구)

  • Park, Jong-Ho;Park, Han-Yung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.39-47
    • /
    • 2011
  • Flow control range of valve, which is installed on pipeline, varies according to valve type, pipe diameter, pipe length, roughness, and elevation difference of both ends of pipeline. A lot of computation efforts and knowledge are needed to estimate flow control range of valve, considering above many parameters. The table of flow control range of each valve type is presented for convenience of pipeline design engineers who must make decision of valve size and type in this study. Also the reason that butterfly valve is recommended for flow control, and gate valve is forbidden is presented via quantification and figures in this study.

Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 1 : CFD Analysis and its Comparison with Experimentation) (LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제1부 : CFD해석과 실험결과의 비교))

  • Kim, Sang-Wan;Choi, Young-Do;Kim, Jung-Hwan;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • Butterfly valves are widely used as control valves for industrial process. For the definition of optimum configuration of the valve, wide range of related studies has been actively conducted in the case of working fluids of water or air under the normal temperature. Recently, internal flow and performance characteristics of cryogenic butterfly valve for LNG carrier take a growing interest in the field of research and development. Therefore, present study is aimed to investigate the internal flow and performance characteristics of the cryogenic butterfly valve because the study result for the valve can be hardly found at present. Part 1 of this paper describes the study result of a butterfly valve model under the condition of the normal temperature. Succeeding Part 2 of this paper will describe the internal flow characteristics of a cryogenic butterfly valve for LNG carrier. The results of Part 1 show that pressure loss coefficients and flow rate coefficients obtained by the present experiment and CFD analysis agree well each other. Moreover, internal flow visualization for the valve by CFD analysis and PIV measurement have revealed complicated flow patterns of the internal flow field in detail.

Study of Waterhammer Suppression Technique due to Valve Closing on Water Supply Pipeline (송수관로 밸브폐쇄에 따른 수충격현상 완화기법 연구)

  • Park, Jong-Ho;Park, Han-Yung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.11-17
    • /
    • 2011
  • The cause of waterhammer phenomenon due to valve closing which is installed on pipeline is clarified in this study. Also if waterhammer phenomenon occurs on simple pipeline, expensive facilities like pressure relief valve is adapted to protect pipeline from waterhammer so far. But this study shows that waterhammer phenomenon can be suppressed by just simple modification of valve control sequence, and this technique is verified by simulation and site experiment.

A study on the flow characteristics in a plug valve with various port shapes (플러그 밸브의 포트형상 변화에 따른 유동특성 연구)

  • Choi, G.-W.;Park, G.-J.;Kim, Youn J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.259-264
    • /
    • 2000
  • The functions of the plug valve are the control of flow rate as well closing and opening pipe lines. Analyses on the flow characteristics in plug valve port are required to improve the performance and safety at severe operating conditions such as high-pressure and high-temperature. In this study, numerical analyses are carried out with varying the opening rate (fraction of the full open to close) of the valve and the shapes of valve Uk: straight, convex, concave and mixed shapes. The parameters influencing the flow characteristics in the valve are the discharge coefficient( $C_v$) and the resistance coefficient( K). Therefore, the distributions of static pressure, velocity vector and stream lines are investigated, and $C_v$ and K are calculated in each opening rate and shape. In case of full open, the static pressure passed through the valve port has almost been recovered. However, in case of other opening rates, the pressure does not permanently regained due to pressure drop leading to loss. This phenomenon in each shape of the valve shows the different behaviors. Calculation results show that the mixed shape has the best flow attribute.

  • PDF

Improvement of a Flow Coefficient for the Recirculation Chill-down Flow in a Main Oxidizer Shut-off Valve (연소기 산화제 개폐밸브 재순환예냉 유로의 유량계수 개선)

  • Hong, Moongeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.89-95
    • /
    • 2017
  • The improvement of a flow coefficient for the recirculation chill-down flow in a main oxidizer shut-off valve has been presented. The flow coefficient, which is mainly affected by the recirculation outlet port size and the configuration inside the valve, has been predicted with measured flow coefficient values. The comparison of experimentally measured flow coefficient with the predicted value shows the effect of valve inside configuration on the flow coefficient. Consequently, the flow coefficient is twice the previous value and about 75% of the pressure loss assigned to the main oxidizer shut-off valve can be used for additional pressure losses for other components in the recirculation chill-down system of a launch vehicle.

A Study on the Flow Analysis of Triple Eccentric Butterfly Valve with Two-way Pressure (양방향 압력에 작동 가능한 3중 편심 버터플라이 밸브의 유동해석에 관한 연구)

  • RYU, M.R.;PARK, H.J.;KIM, J.H.;LEE, D.H.;LEE, S.B.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • The triple eccentric butterfly valve has metal sheet and this study about butterfly valve ceiling is an innovative approach. But it is affected by the static pressure as well as cross-current. The damage at the valve on the pipe resulted from the reflux is due to valve leakage. This study is investigated on the triple eccentric disk and it is applied with angle and the static pressure in all cases to develop cross-current triple eccentric butterfly valves. The disc with the diameter of 300A is valve against flow velocity. The entrance pressure by flow characteristics is performed with numerical analysis. As the result, valve torque production is reduced more than the conventional triple eccentric valve and entrance pressure is decreased on the increase of valve open angle. And flow coefficient can be known to be increased.

STUDY ON FLOW CHARACTERISTICS FOR PRECISION CONTROL BUTTERFLY VALVE (정밀제어용 버터플라이 밸브의 유동특성에 관한 연구)

  • Park, Song Mook;Choi, Hoon Ki;Yoo, Geun Jong
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • Butterfly valve is a valve that controls fluid flow depending on the size of the opening angle. In general, the size of the opening angle of the valve increases, the fluid flow has also increased sharply. However, sometimes, in a specific piping system, a particular operating condition is needed that the fluctuation of the fluid flow should not have large amount although the size of opening angle of the valve become larger. In butterfly value, the shape of a typical thin plate, it is impossible to control a minute fluid, but in thick plate type, it is possible. In this study, we got the fluid flow control characteristics and pressure drop through both a numerical method and an experimental method about thick plate type. The numerical result and experimental result of flow coefficient show a similar pattern. In addition, we could find that minute fluid flow control was possible in the area of small size of the opening angle.