This paper presents an adaptive call admission control(CAC) algorithm based on a target handoff call dropping probability in mobile wireless environments. This method uses a neural network for predicting and reserving the bandwidth demands for handoff calls and new calls. The amount of bandwidth to be reserved is adaptively adjusted by a target value of handoff call dropping probability(CDP). That is, if the handoff CDP exceeds the a target CDP value, the bandwidth to be reserved should be increased to reduce the handoff dropping probability below a target value. The proposed method is intended to prevent from increasing handoff call dropping probability when bandwidth to be reserved is not enough for handoff calls due to an uncertain prediction. Our simulations compare the handoff CDP in proposed CAC with that of an existing CAC. Results show that the proposed method sustains handoff call dropping probability below our target value.
Oh, Seok Jin;Park, Je Jin;Choi, Gun Soo;Ha, Tae Jun
KSCE Journal of Civil and Environmental Engineering Research
/
v.38
no.4
/
pp.587-593
/
2018
The current road traffic noise prediction programs of Korea, which are widely used, are based upon foreign prediction model. Thus, it is necessary to verify foreign prediction models to find out whether they are suitable for the domestic road traffic environment. In addition, an analysis and an in-depth study on the main factors should be conducted in advance as the influence factors on the occurrence of traffic noise vary for each prediction model. Therefore, this study examined the influence factors and the existing prediction models used to forecast road traffic noise. Also, analyzed their relationship with the factors influencing the noise generated by driving vehicles through multiple regression analysis using a prediction model, taking into consideration of the traffic environment and the road geometric structure. In addition, this study will apply experimental values to the existing road traffic noise prediction model (NIER, RLS-90) and the deducted road traffic noise prediction model. As a result, the order of the absolute value sum of the errors are NIER, RLS-90, model value. Through comparison and verification, developed models are to be analyzed for providing basic research results for future study on road traffic noise prediction modeling.
This study was conducted to compare and analyze gross calorific values from measurement methods of lignocellulosic biomass and calculation data from calorific value prediction models based on the elemental content. The deviation of Liriodendron tulipifera (LT) and Populus euramericana (PE) was shown 7.7 cal/g and 7.4 cal/g respectively in palletization method, which are within repeatability limit 28.8 cal/g of ISO FDIS 18125. In the case of Thailand charcoal (TC), nontreatment method and palletization method was satisfied with repeatability limit as 22.8 cal/g and 8.8 cal/g respectively. Seowon charcoal (SC) was shown deviation of 11.4 cal/g in nontreatment method, because the density and chemical affinity of sample increases as the carbon content increases from heat treatment at high temperature in the case of TC and SC. In addition, after applying the elemental content of each of these samples to the calorific value prediction models, the study found that Model Equation (3) was relatively consistent with measured calorific values of all these lignocellulosic biomass. Thus, study about the correlation between the density and size of particle should be conducted in order to select the measurement method for a wide range of solid biofuels in the future.
Journal of the Korean Data and Information Science Society
/
v.24
no.4
/
pp.857-865
/
2013
Extreme rainfall causes heavy losses in human life and properties. Hence many works have been done to predict extreme rainfall by using extreme value distributions. In this study, we use a generalized extreme value distribution to derive the posterior predictive density with hierarchical Bayesian approach based on the data of Seoul area from 1973 to 2010. It becomes clear that the probability of the extreme rainfall is increasing for last 20 years in Seoul area and the model proposed works relatively well for both point prediction and predictive interval approach.
The Service Availability (SA) in the viewpoint of passenger is used as the key performance indicator (KPI) of quality of service in Light Rail Transit (LRT) Public-Private Partnerships projects. But there are many disputes on the target value of SA because of the lack of experience in SA. The target value of SA should be set at an early stage of the project to be specified on the system specifications and operation plan. Therefore, this paper developed the quantitative prediction model of SA to set the reasonably achievable target value of SA at an early stage of the LRT project. Also this paper analyzed the relationship and differentiation of SA and Train Punctuality (TP) that is mostly compared with SA.
Lee, Soo Hyun;Seo, Dongwon;Lee, Doo Ho;Kang, Ji Min;Kim, Yeong Kuk;Lee, Kyung Tai;Kim, Tae Hun;Choi, Bong Hwan;Lee, Seung Hwan
Journal of Animal Science and Technology
/
v.62
no.4
/
pp.438-448
/
2020
This study was performed to increase the accuracy of genomic estimated breeding value (GEBV) predictions for domestic pigs using single-breed and admixed reference populations (single-breed of Berkshire pigs [BS] with cross breed of Korean native pigs and Landrace pigs [CB]). The principal component analysis (PCA), linkage disequilibrium (LD), and genome-wide association study (GWAS) were performed to analyze the population structure prior to genomic prediction. Reference and test population data sets were randomly sampled 10 times each and precision accuracy was analyzed according to the size of the reference population (100, 200, 300, or 400 animals). For the BS population, prediction accuracy was higher for all economically important traits with larger reference population size. Prediction accuracy was ranged from -0.05 to 0.003, for all traits except carcass weight (CWT), when CB was used as the reference population and BS as the test. The accuracy of CB for backfat thickness (BF) and shear force (SF) using admixed population as reference increased with reference population size, while the results for CWT and muscle pH at 24 hours after slaughter (pH) were equivocal with respect to the relationship between accuracy and reference population size, although overall accuracy was similar to that using the BS as the reference.
Journal of Korean Society of Industrial and Systems Engineering
/
v.39
no.1
/
pp.64-72
/
2016
In this paper, we utilize a Gaussian process to predict the power consumption in the air-conditioning system. As the power consumption in the air-conditioning system takes a form of a time-series and the prediction of the power consumption becomes very important from the perspective of the efficient energy management, it is worth to investigate the time-series model for the prediction of the power consumption. To this end, we apply the Gaussian process to predict the power consumption, in which the Gaussian process provides a prior probability to every possible function and higher probabilities are given to functions that are more likely consistent with the empirical data. We also discuss how to estimate the hyper-parameters, which are parameters in the covariance function of the Gaussian process model. We estimated the hyper-parameters with two different methods (marginal likelihood and leave-one-out cross validation) and obtained a model that pertinently describes the data and the results are more or less independent of the estimation method of hyper-parameters. We validated the prediction results by the error analysis of the mean relative error and the mean absolute error. The mean relative error analysis showed that about 3.4% of the predicted value came from the error, and the mean absolute error analysis confirmed that the error in within the standard deviation of the predicted value. We also adopt the non-parametric Wilcoxon's sign-rank test to assess the fitness of the proposed model and found that the null hypothesis of uniformity was accepted under the significance level of 5%. These results can be applied to a more elaborate control of the power consumption in the air-conditioning system.
When designing photovoltaic power plants in Korea, the prediction of photovoltaic power generation at the design phase is carried out using PVSyst, PVWatts (Overseas power generation prediction software), and overseas weather data even if the test site is a domestic site. In this paper, for a comparative study to predict power generation using weather information, domestic photovoltaic power plants in two regions were selected as target sites. PVsyst, which is a commercial power generation forecasting program, was used to compare the accuracy between the predicted value of power generation (obtained using overseas weather information (Meteonorm 7.1, NASA-SSE)) and the predicted value of power generation obtained by the Korea Meteorological Administration (KMA). In addition, we have studied ways to improve the prediction of power generation through comparative analysis of meteorological data. Finally, we proposed a revised solar power generation prediction model that considers climatic factors by considering the actual generation amount.
Epoxy asphalt concrete is used to reduce dead load and to increase durability on long-span steel bridge overlay. The strength development properties of epoxy asphalt concrete are affected by time and temperature because epoxy asphalt is two-phase reactive materials. The strength development of epoxy asphalt concrete should be predicted precisely to decide traffic opening time. Based on this background in mind, the prediction model for traffic opening time for epoxy asphalt pavement was proposed in this research. The developed model using nonlinear curve fitting revealed R2 value of 0.943 while the R2 value of the existing model using chemical kinetics was 0.806. An improved precise prediction result is to be obtained when the prediction model uses accurate temperature data of pavement.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.3
/
pp.175-181
/
2021
This paper analyzes the artificial intelligence-based approach for short-term energy consumption prediction. In this paper, we employ the reinforcement learning algorithms to improve the limitation of the supervised learning algorithms which usually utilize to the short-term energy consumption prediction technologies. The supervised learning algorithm-based approaches have high complexity because the approaches require contextual information as well as energy consumption data for sufficient performance. We propose a deep reinforcement learning algorithm based on multi-agent to predict energy consumption only with energy consumption data for improving the complexity of data and learning models. The proposed scheme is simulated using public energy consumption data and confirmed the performance. The proposed scheme can predict a similar value to the actual value except for the outlier data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.