• Title/Summary/Keyword: Valley beater

Search Result 12, Processing Time 0.025 seconds

Effect of PFI mill and Valley beater refining on cellulose degree of polymerization, alpha cellulose contents, and crystallinity of wood and cotton fibers

  • Hai, Le Van;Park, Hee Jung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.27-33
    • /
    • 2013
  • Manufacturing fabrics from dissolving cellulosic pulp is increasing in these days. For making high quality of cellulose-based fabrics, control of cellulose DP (degree of polymerization), its alpha cellulose content, its brightness, and its crystallinity are important. To process the cellulosic raw material, refining of cellulosic fibers is essential, and it is important to know if refining affects those important cellulose properties. The effects of PFI mill and Valley beater refining on the alpha-cellulose content, cellulose DP, crystallinity, and paper mechanical properties of wood and two different cotton fibers were studied. The results showed that PFI mill refining rarely affected those properties. Fibers refined by a Valley beater displayed a small reduction in fiber length in comparison with those refined by a PFI mill. However, the Valley beater refining method produced almost no changes in cellulose properties, either. The refining process seemed to have very little effect on the cellulose DP, crystallinity index, or alpha-cellulose content until the freeness decreased to around 300 mL CSF for wood and 100 mL CSF for cotton fibers, respectively. There were also no differences in tensile strength development in two refining methods.

Strength Property Improvement of OCC-based Paper by Various Mechanical and Chemical Treatments of its Fiber (골판지 고지의 물리화학적 처리에 의한 강도향상)

  • Seo, Yung B.;Lee, Jong Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • To increase the strength properties of recycled fiber, especially OCC (Old Corrugated Container) in this study, we used the mechanical pretreatment on the fibers before refining. The mechanical action in the Hobart mixer induced high shear and compression on the fibers, which resulted in the breakdowns of fiber internal structure, and microcompressions on the surface of the fibers. We evaluated the degree of mechanical treatment by fiber curl index. Four different refining techniques were applied to the pretreated fibers (Valley beater, Kady mill, PFI mill, and Impact refining) to find the best combination of the pretreatment and the refining methods. Conclusions were summarized as followed. 1. In keeping the fiber length from shortening, Kady mill and PFI mill refining were effective. Kady mill and Valley beater application tended to straighten out the fiber shapes. 2. Valley beating increased the breaking length of the handsheets better than other methods, while lowering the tear strength most. The mechanical pretreatment increased breaking length about 10% in average irrespective of four different refining methods. 3. Tear strength was increased by the mechanical pretreatment and by the PFI mill refining. 4. Burst strength was increased by the mechanical pretreatment and by valley beating method. 5. In increasing the breaking length and burst strength while keeping tear strength, combination of mechanical pretreatment and Valley beating were most effective.

  • PDF

Effective Utilization of Hemp Fiber for Pulp and Papermaking(II) - Characteristics of hemp-wood paper made of hemp fiber cooked at low temperature - (펄프.제지용 원료로서의 삼 섬유 이용에 관한 연구(제2보) -저온 펄프화 삼 섬유의 수초지 특성-)

  • Lee, Myoung-Ku;Kim, Ji-Seop;Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.27-33
    • /
    • 2011
  • Hemp bast pulp cooked at temperature below $100^{\circ}C$ followed by defibration by the knife and the valley beater, respectively was mixed with softwood pulp varying the amount of hemp pulp in order to find the optimum condition for making hemp-wood paper. Both the knife and the valley beaters contributed to the dispersion of pulp fiber well. Lots of shives were found when the knife beater was applied exclusively, but the fibers were dispersed well when freeness dropped to 600 mL CSF and 500 mL CSF by the valley beater. Air resistance decreased drastically below 500 mL CSF where rapid disrupture of pulp fiber occurred. As the values for freeness and hemp fiber content increased, so did roughness and bulk. It was apparent that the tear strength of hemp-wood paper was on the rise drastically as hemp fiber content increased. Nevertheless the optimum hemp fiber content of hemp-wood paper would be 20% considering the decrease in both tensile and burst strengths as well as sheet formation.

Strength Property Improvement of OCC-based Paper by Chemical and Mechanical Treatments(I) (골판지 고지의 물리화학적 처리에 의한 강도 향상(제 1 보))

  • Lee, Jong-Hoon;Seo, Yung B.;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • To improve the physical properties of OCC (Old Corrugated Container) fibers, we used the mechanical pre-treatment on the fibers before refining . The mechanical action in the Hobart mixer induced high shear and compression on the fibers, which resulted in changes of fiber internal structure, and microcompressions on the surface of the fibers. We evaluated the amount of mechanical treatment on the fibers by fiber curl index for convenience. Four different refining techniques were applied to the pre-treated fibers (valley beater, Kady mill, PFI mill, and Impact refining) to find the best combination of the pre-treatment and the refining methods. Conclusions were summarized as followed. 1. Mechanical pre-treatment in Hobart mixer for more than 1 hour caused the increase of curl index of OCC fibers, and increased breaking length, burst index, and tear index the handsheets more than 10 % in this experiment. 2. Kady mill and PFI mill refining were effective in keeping fiber length from shortening Kady mill and Valley beater refining straightened out the fiber curls, and reduced the curl index. 3. Valley beating reduced fiber length very fast and generated fines more than other refining methods. 4. To increase breaking length and burst strength while keeping tear strength , combination of mechanical pre-treatment and Valley beating were most effective.

  • PDF

Developments of the Recycling Treatment Methods of Car Air Filter and Paper Making of Corrugating Medium for Packaging (자동차용 에어필터의 재생 처리법 개발 및 포장원지 제조)

  • Jo, Jung-Yeon;Shin, Jun-Seop
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2005
  • This study was carried out for effective utilization of recycling resources to investigate the repulping conditions of car air filter waste paper and to evaluate the application into corrugating medium papermaking by blending these repulped pulps. Car air filter waste paper was made of virgin BKP and it was dipped into phenol resin solution. It was well disintegrated by laboratory Valley beater with 10%(basis on oven-dried pulp weight) NaOH addition and defoamer usage. The optimal temperature, beating consistency and treatment time were mainly $40^{\circ}C$, 1% and $30{\sim}40$ minutes, respectively. Handsheets were prepared with various blending ratios between air filter recycled pulp and KOCC. In the case of $10{\sim}20%$ substitution with air filter recycled pulp, physical properties reductions as compressive strength and burst strength of sheets were lower than others. These results showed more favour than the partial substitution of KOCC for corrugating medium even though some strength reduction of paper. It was also observed that the waste water of air filter recycling was not affective to environmental problems.

  • PDF

Change of Paper's Physical and Fracture Mechanical Properties Depending on Fibers Properties (섬유 특성에 따른 종이의 물리적, 파괴 역학적 특성 변화)

  • 이진호;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.37-42
    • /
    • 2003
  • Physical properties of paper can be explained in terms of the changes in fiber's morphological properties. As the paper machine speed increases, the basis weight decreases and the mixing ratio of inferior recycled fibers increases, paper break becomes important than ever before. One of the objectives of this study is to analyze paper's physical, mechanical and fracture mechanical properties depending on softwood(SW) and hardwood(HW) mixing ratios and recycling. Fibers were refined by Valley beater to 450 mL CSF. Handsheets of 30 g/$\textrm{m}^2$ were prepared at different mixing ratios. Fracture toughness was measured as the amount of energy applied to cracked sample before total failure. Fracture toughness showed different trend to other strength properties. At the mixing ratio of SW 80: HW 20, papers showed the maximum fracture toughness. At this mixing ratio, flexible softwood fibers were mostly broken and stiff hardwood fibers were mostly pulled out.

Effect of Recycling on the Papermaking Properties of Wood Pulp Fibers (펄프섬유(纖維)의 제지특성(製紙特性)에 미치는 회수처리(回收處理)의 영향(影響))

  • Kim, Hyoung-Jin;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.21-38
    • /
    • 1993
  • In order to investigate the influence of recycling, a laboratory method simulating the papermaking process was used for assessing the effects of recycling on fiber properties. Sw-BKP, Hw-BKP and BGP were disintegrated and beaten to about 42$^{\circ}$SR-44$^{\circ}$SR by a valley beater. After beating, these pulps were dewatered by centrifuge and dried at 90$^{\circ}C$ for 72hrs. This recycling process(sequence of wetting, defiberating, dewatering and drying) was repeated seven times. Physical, mechanical and optical properties of recycled pulps were evaluated by TAPPI Standards. Morphological changes occurred through recycling process was observed by SEM. Sheet density decreased with recycling. The largest drop in density occurred during the first recycling. The porosity values decreased with recycling. Mechanical properties such as tensile, burst strength and folding endurance, decreased with recycling. However tear strength of Sw-BKP and mixtured pulp increased at the first recycling. Optical properties such as brightness, opacity and light scattering coefficient, increased with recycling. However, brightness of mixtured pulp gradually decreased with recycling. Fibrillated outer layer of the fiber was gradually removed from the surface with recycling. As a result of recycling, crinkles on the fiber surface were found to be more folded.

  • PDF

Analysis of Effects of Fiber's Collapse Index on Physical Properties of Paper Using CLSM (종이의 물리적 특성에 미치는 섬유의 찌그러짐 특성의 영향에 대한 CLSM 분석)

  • 김서환;박종문;김철환
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.46-51
    • /
    • 1999
  • The most important effect of refining is believed as the internal fibrillation. The internal fibrillation is the separation of the fiber wall into several lamellae. The internal fibrillation results in fiber swelling as water penetrates the fiber wall. The increase in paper strength as a result of refining was due to delamination which made the fiber more flexible. Pulp fibers are refined to 20, 40, and 70$^{\circ}$SR freeness at Valley beater. Changes of Physical paper properties are analyzed depending on fiber wall thickness and fiber's collapse index at 2.5 and 5.6kg$_f$ refining load. At same $^[\circ}$SR freeness with 2.5kg$_f$ refining load, fiber wall thickness is increased further than at high 5.6kg$_f$ refining load. With higher fiber wall thickness by lower intensity refining load, higher internal fibrillation, flexibility, collapsability of fibers are achieved. Those effects improve WRV, tensile strength, and burst strength. Tear strength shows opposite trend to tensile and burst strength as usual.

  • PDF

A study on the application and manufacture of paper sheet containing lyocell fiber( I ) (Lyocell 섬유를 함유한 종이의 제조 및 적용에 관한 연구( I ))

  • 김종열;류운형;유성종;김정열;신창호;김영호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2000
  • In order to investigate the applicability of lyocell fiber to filter paper, papper sheets were manufactured with the addition of lyocell fibers in various length(1.5 denier: 2, 3, 4mm) and content(10, 30, 50%) and their physical characters, such as fibrilation rate, adsorption efficiency of methylene blue(MB), paper formation, and crimping ability, etc, were tested. The level of main fibrilation from lyocell fiber was higher in wet beating process than that in free beating because of the higher strength of lyocell fiber compared with wood fiber. Fibrilation could be observed at the degree of beating over 30$^{\circ}$ SR in wet beating with Valley beater. The air permeability and tear factor of the paper increased and the paper formation index decreased according to the increase of fiber length. The weak binding force of lyocell fiber in spite of its higher fiber strength, might be a limitng factor in addition of lyocell fiber to the natural wood pulp in manufacturing the paper having the needed physical properties. High contents of wood pulp decreased air permeability, the breaking length, tear factor, the bursting strength, and paper formation index in paper sheets. As the contents of lyocell increased from 10% to 100%, the adsorption efficiency of MB was elevated to 1.7-7.9 times compared with that in 100% wood pulp. But the length of lyocell fiber did not affect the MB adsorption.

  • PDF

Analysis of Printed Image Depending on Mixing Ratios of Softwood and Hardwood fibers Using Image Analyzer and CLSM (화상분석기와 CLSM을 이용한 침.활엽수 섬유의 배합비에 따른 인쇄화상 분석)

  • 이장호;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.25-31
    • /
    • 2002
  • The purpose of this study was to analyze how the fiber properties and mixing ratio of softwood and hardwood pulp affect on roundness of printed image. Softwood pulp and hardwood pulp were refined to 400 and 600ml CSF by Valley beater and handsheets of 70 g/$m^2$ basis weight were made at different mixing ratios of hardwood and softwood pulp. The roundness, dot area, and shape of the printed dot were measured by Image Analyzer. The depths and shapes of the acridine orange penetration into paper were measured by CLSM. With higher mixing ratio of hardwood pulp, the paper showed higher air-permeability and better formation, especially at lower freeness. The roundness of the printed image became better and the dot size became smaller when the amount of hardwood pulp increased. Penetration depth of acridine orange by CLSM became greater and roundness increased to real circle when the amount of hardwood pulp increased. It was thought that higher mixing ratio of hardwood fibers resulted in efficient penetration by better formation with uniform micro-pore distribution and it increased roundness. It was thought that fiber properties and mixing ratio affected the structure of paper and the shape of the printed dot. This study showed that the measurement of depth of the liquid penetration into paper without destruction and contact was feasible. Moreover, this method showed that the shape of the liquid penetration was measurable.