• Title/Summary/Keyword: Validation of Cryptographic Standards Algorithms

Search Result 5, Processing Time 0.02 seconds

Modeling cryptographic algorithms validation and developing block ciphers with electronic code book for a control system at nuclear power plants

  • JunYoung Son;Taewoo Tak;Hahm Inhye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • Nuclear power plants have recognized the importance of nuclear cybersecurity. Based on regulatory guidelines and security-related standards issued by regulatory agencies around the world including IAEA, NRC, and KINAC, nuclear operating organizations and related systems manufacturing organizations, design companies, and regulatory agencies are considering methods to prepare for nuclear cybersecurity. Cryptographic algorithms have to be developed and applied in order to meet nuclear cybersecurity requirements. This paper presents methodologies for validating cryptographic algorithms that should be continuously applied at the critical control system of I&C in NPPs. Through the proposed schemes, validation programs are developed in the PLC, which is a critical system of a NPP's I&C, and the validation program is verified through simulation results. Since the development of a cryptographic algorithm validation program for critical digital systems of NPPs has not been carried out, the methodologies proposed in this paper could provide guidelines for Cryptographic Module Validation Modeling for Control Systems in NPPs. In particular, among several CMVP, specific testing techniques for ECB mode-based block ciphers are introduced with program codes and validation models.

암호 모듈 평가 프로그램(CMVP) 분석과 소개

  • 김석우;정성민;박성근;김일준
    • The Magazine of the IEIE
    • /
    • v.30 no.6
    • /
    • pp.624-637
    • /
    • 2003
  • CMVP(Cryptographic Module Validation Program) validates cryptographic modules to FIPS 140-1, 2, and other FIPS cryptography based standards. This paper gives an overview of the CMVP, cryptographic modules, cryptographic algorithms, and the applicable standards. This provides a brief overview of the security requirements that must be met by each cryptographic module that is submitted to a CMT laboratory for conformance testing and describes the Cryptographic Algorithm Testing.

  • PDF

On the SEED Validation System (SEED 구현 적합성 검증 시스템에 관한 연구)

  • Kim, Yeok;Jung, Chang-Ho;Jang, Yoon-Seok; Lee, Sang-Jin;Lee, Sung-Jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.69-85
    • /
    • 2003
  • In this paper, we discuss a validation test for cryptographic algorithms. The cryptographic algorithms decide on the security and the confidence of a security system protecting sensitive information. So. the implementation of cryptographic algorithms is very critical of the system. The validation lest specifies the procedures involved in validating implementations of the cryptographic standards and provides conformance testing for components or procedures of the algorithm. We propose a SEED Validation System(SVS) to verify that the implementation correctly performs the SEED algorithm. The SVS is composed of two types of validation tests, the Known Answer test and the Monte Carlo test. The System generates the testing data for the Known Answer tests and the random data for the Monte Carlo tests. This system can be used to validate and certify the cryptographic product.

Design of Validation System for a Crypto-Algorithm Implementation (암호 알고리즘 구현 적합성 평가 시스템 설계)

  • Ha, Kyeoung-Ju;Seo, Chang-Ho;Kim, Dae-Youb
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.4
    • /
    • pp.242-250
    • /
    • 2014
  • Conventional researches of standard tool validating cryptographic algorithm have been studied for the internet environment, for the mobile internet. It is important to develop the validation tool for establishment of interoperability and convenience of users in the information systems. Therefore, this paper presents the validation tool of Elliptic Curve Cryptography algorithm that can test if following X9.62 technology standard specification. The validation tool can be applied all information securities using DES, SEED, AES, SHA-1/256/384/512, RSA-OAEP V2.0, V2.1, ECDSA, ECKCDSA, ECDH, etc. Moreover, we can enhance the precision of validation through several experiments and perform the validation tool in the online environment.

A lightweight true random number generator using beta radiation for IoT applications

  • Park, Kyunghwan;Park, Seongmo;Choi, Byoung Gun;Kang, Taewook;Kim, Jongbum;Kim, Young-Hee;Jin, Hong-Zhou
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.951-964
    • /
    • 2020
  • This paper presents a lightweight true random number generator (TRNG) using beta radiation that is useful for Internet of Things (IoT) security. In general, a random number generator (RNG) is required for all secure communication devices because random numbers are needed to generate encryption keys. Most RNGs are computer algorithms and use physical noise as their seed. However, it is difficult to obtain physical noise in small IoT devices. Since IoT security functions are required in almost all countries, IoT devices must be equipped with security algorithms that can pass the cryptographic module validation programs of each country. In this regard, it is very cumbersome to embed security algorithms, random number generation algorithms, and even physical noise sources in small IoT devices. Therefore, this paper introduces a lightweight TRNG comprising a thin-film beta-radiation source and integrated circuits (ICs). Although the ICs are currently being designed, the IC design was functionally verified at the board level. Our random numbers are output from a verification board and tested according to National Institute of Standards and Technology standards.