• Title/Summary/Keyword: Validation Rate

Search Result 711, Processing Time 0.038 seconds

On Practical Choice of Smoothing Parameter in Nonparametric Classification (베이즈 리스크를 이용한 커널형 분류에서 평활모수의 선택)

  • Kim, Rae-Sang;Kang, Kee-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.283-292
    • /
    • 2008
  • Smoothing parameter or bandwidth plays a key role in nonparametric classification based on kernel density estimation. We consider choosing smoothing parameter in nonparametric classification, which optimize the Bayes risk. Hall and Kang (2005) clarified the theoretical properties of smoothing parameter in terms of minimizing Bayes risk and derived the optimal order of it. Bootstrap method was used in their exploring numerical properties. We compare cross-validation and bootstrap method numerically in terms of optimal order of bandwidth. Effects on misclassification rate are also examined. We confirm that bootstrap method is superior to cross-validation in both cases.

The Effectiveness of Independent Verification and Validation of Safety-critical Aviation Systems (항공 안전 필수 시스템에 대한 독립적 검증 및 확인의 효과도 분석)

  • Kim, Young-Hoon;Yoo, Beong-Seon;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.155-162
    • /
    • 2017
  • In recent years, aviation-related safety-critical systems have been developed in Korea, but these products have not satisfied the specified requirements and thus have not been commercialized or commercialized. Due to increasing complexity of the modern aviation system, traditional verification and validation techniques are not sufficient to identify and reduce latent risks in the system. To overcome this shortcoming, a new method which is called 'Independent verification and validation (IV&V)' is suggested. However, academic researches on the effectiveness of this independent verification and validation have not been conducted domestically, and it is performed very rarely even overseas. Therefore, in this paper, we investigated the application of independent verification and validation of the safety-critical aviation systems performed by advanced aviation organizations, and analyzed various positive effects on projects. As a result of the analysis, IV&V shows that early error detection rate is increased, potential risk is mitigated early, and the complex reworking probability, which appears later in the development life cycle, is reduced, greatly preventing the development schedule and costs from increasing.

Application of Prediction Rate Curves to Estimation of Prediction Probability in GIS-based Mineral Potential Mapping (GIS 기반 광물자원 분포도 작성에서 예측 확률 추정을 위한 예측비율곡선의 응용)

  • Park, No-Wook;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.287-295
    • /
    • 2007
  • A mineral potential map showing the distributions of potential areas for exploration of undiscovered mineral deposits is a kind of predictive thematic maps. For any predictive thematic maps to show reasonably significant prediction results, validation information on prediction capability should be provided in addition to spatial locations of high potential areas. The objective of this paper is to apply prediction rate curves to the estimation of prediction probability of future discovery. A case study for Au-Ag mineral potential mapping using geochemical data sets is carried out to illustrate procedures for estimating prediction probability and for an interpretation. Through the case study, quantitative information including prediction rates and probability obtained by prediction rate curves was found to be very important for the interpretation of prediction results. It is expected that such quantitative validation information would be effectively used as basic information for cost analysis of exploration and environmental impact assessment.

Lightweight Validation Mechanism for IoT Sensing Data Based on Obfuscation and Variance Analysis (난독화와 변화량 분석을 통한 IoT 센싱 데이터의 경량 유효성 검증 기법)

  • Yun, Junhyeok;Kim, Mihui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.9
    • /
    • pp.217-224
    • /
    • 2019
  • Recently, sensor networks are built and used on many kinds of fields such as home, traffic, medical treatment and power grid. Sensing data manipulation on these fields could be a serious threat on property and safety. Thus, a proper way to block sensing data manipulation is necessary. In this paper, we propose IoT(Internet of Things) sensing data validation mechanism based on data obfuscation and variance analysis to remove manipulated sensing data effectively. IoT sensor device modulates sensing data with obfuscation function and sends it to a user. The user demodulates received data to use it. Fake data which are not modulated with proper obfuscation function show different variance aspect with valid data. Our proposed mechanism thus can detect fake data by analyzing data variance. Finally, we measured data validation time for performance analysis. As a result, block rate for false data was improved by up to 1.45 times compared with the existing technique and false alarm rate was 0.1~2.0%. In addition, the validation time on the low-power, low-performance IoT sensor device was measured. Compared to the RSA encryption method, which increased to 2.5969 seconds according to the increase of the data amount, the proposed method showed high validation efficiency as 0.0003 seconds.

Process Modeling of IGCC Power Plant using Open-Equation Modeling Framework (개방형 수식모델링 툴을 이용한 IGCC 플랜트 공정모사)

  • Kim, Simoon;Joo, Yongjin;Kim, Miyeong;Lee, Joongwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.113.1-113.1
    • /
    • 2010
  • IGCC(Integrated Coal Gasification and Combined Cycle) plants can be among the most advanced and environmental systems for electric energy generation from various feed stocks and is becoming more and more popular in new power generation fields. In this work, the performance of IGCC plants employing Shell gasification technology and a GE 7FB gas turbine engine was simulated using IPSEpro open-equation modeling environment for different operating conditions. Performance analyses and comparisons of all operating cases were performed based on the design cases. Discussions were focused on gas composition, syngas production rate and overall performance. The validation of key steady-state performance values calculated from the process models were compared with values from the provided heat and material balances for Shell coal gasification technology. The key values included in the validation included the inlet coal flow rate; the mass flow rate, heating value, and composition of major gas species (CO, H2, CH4, H2O, CO2, H2S, N2, Ar) for the syngas exiting the gasifier island; and the HP and MP steam flows exiting the gasifier island.

  • PDF

Compensation of Errors on Car Black Box Records and Trajectory Reconstruction Analysis (자동차 블랙박스 기록 오차 보정과 경로 재구성 해석)

  • Yang, Kyoung-Soo;Lee, Won-Hee;Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.182-190
    • /
    • 2004
  • This paper presents reconstruction analysis of vehicle trajectory using records of a developed black box, and results of validation tests. For reconstruction of vehicle trajectory, the black box records the longitudinal and lateral accelerations and yaw-rate of vehicle during a pre-defined time period before and after the accident. One 2-axis accelerometer is used for measuring accelerations, and one vibrating structure type gyroscope is used for measuring yaw-rate of vehicle. The vehicle's planar trajectory can be reconstructed by integrating twice accelerations along longitudinal and lateral directions with yaw-rate values. However, there may be many kinds of errors in sensor measurements. The causes of errors are as follows: mis-alignment, low frequency offset drift, high frequency noise, and projecting 3-dimensional motion into 2-dimensional motion. Therefore, some procedures are taken for error compensation. In order to evaluate the reliability and the accuracy of trajectory reconstruction results, the black box was mounted on a passenger car. The vehicle was driven and tested along various specified lanes. Through the tests, the accuracy and usefulness of the reconstruction analysis have been validated.

Retrieval of Rain-Rate Using the Advanced Microwave Sounding Unit(AMSU)

  • Byon, Jae-Young;Ahn, Myoung-Hwan;Sohn, Eun-Ha;Nam, Jae-Cheol
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.361-365
    • /
    • 2002
  • Rain-rate retrieval using the NOAA/AMSU (Advanced Microwave Sounding Unit) (Zaho et al., 2001) has been implemented at METRI/KMA since 2001. Here, we present the results of the AMSU derived rain-rate and validation result, especially for the rainfall associated with the tropical cyclone for 2001. For the validation, we use rain-rate derived from the ground based radar and/or rainfall observation from the rain gauge in Korea. We estimate the bias score, threat score, bias, RMSE and correlation coefficient for total of 16 tropical cyclone cases. Bias score shows around 1.3 and it increases with the increasing threshold value of rain-rate, while the threat score extends from 0.4 to 0.6 with the increasing threshold value of precipitation. The averaged rain-rate for at all 16 cases is 3.96mm/hr and 1.41mm/hr for the retrieved from AMSU and the ground observation, respectively. On the other hand, AMSU rain-rate shows a much better agreement with the ground based observation over inner part of tropical cyclone than over the outer part (Correlation coefficient for convective region is about 0.7, while it is only about 0.3 over the stratiform region). The larger discrepancy of tile correlation coefficient with the different part of the tropical cyclone is partly due to the time difference in between ice water path and surface rainfall. This results indicates that it might be better to develop the algorithm for different rain classes such as convective and stratiform.

  • PDF

Time Series Data Analysis using WaveNet and Walk Forward Validation (WaveNet과 Work Forward Validation을 활용한 시계열 데이터 분석)

  • Yoon, Hyoup-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • Deep learning is one of the most widely accepted methods for the forecasting of time series data which have the complexity and non-linear behavior. In this paper, we investigate the modification of a state-of-art WaveNet deep learning architecture and walk forward validation (WFV) in order to forecast electric power consumption data 24-hour-ahead. WaveNet originally designed for raw audio uses 1D dilated causal convolution for long-term information. First of all, we propose a modified version of WaveNet which activates real numbers instead of coded integers. Second, this paper provides with the training process with tuning of major hyper-parameters (i.e., input length, batch size, number of WaveNet blocks, dilation rates, and learning rate scheduler). Finally, performance evaluation results show that the prediction methodology based on WFV performs better than on the traditional holdout validation.

Predictive Modeling for the Growth of Salmonella Enterica Serovar Typhimurium on Lettuce Washed with Combined Chlorine and Ultrasound During Storage

  • Park, Shin Young;Zhang, Cheng Yi;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.4
    • /
    • pp.374-379
    • /
    • 2019
  • This study developed predictive growth models of Salmonella enterica Serovar Typhimurium on lettuce washed with chlorine (100~300 ppm) and ultrasound (US, 37 kHz, 380 W) treatment and stored at different temperatures ($10{\sim}25^{\circ}C$) using a polynomial equation. The primary model of specific growth rate (SGR) and lag time (LT) showed a good fit ($R^2{\geq}0.92$) with a Gompertz equation. A secondary model was obtained using a quadratic polynomial equation. The appropriateness of the secondary SGR and LT model was verified by coefficient of determination ($R^2=0.98{\sim}0.99$ for internal validation, 0.97~0.98 for external validation), mean square error (MSE=-0.0071~0.0057 for internal validation, -0.0118~0.0176 for external validation), bias factor ($B_f=0.9918{\sim}1.0066$ for internal validation, 0.9865~1.0205 for external validation), and accuracy factor ($A_f=0.9935{\sim}1.0082$ for internal validation, 0.9799~1.0137 for external validation). The newly developed models for S. Typhimurium could be incorporated into a tertiary modeling program to predict the growth of S. Typhimurium as a function of combined chlorine and US during the storage. These new models may also be useful to predict potential S. Typhimurium growth on lettuce, which is important for food safety purposes during the overall supply chain of lettuce from farm to table. Finally, the models may offer reliable and useful information of growth kinetics for the quantification microbial risk assessment of S. Typhimurium on washed lettuce.