• Title/Summary/Keyword: Valence band structure

Search Result 92, Processing Time 0.025 seconds

Valence State of the Sm Metal

  • Jang, Y.R.;Min, Byung-Il
    • Journal of Magnetics
    • /
    • v.3 no.1
    • /
    • pp.1-3
    • /
    • 1998
  • Valence state of the Sm metal is investigated using the total energy linearized muffin-tin orbital (LMTO) band method for the observed Sm-type crystal structure. We have considered both the relativistic and the semi-relativistic description of 4f-core electrons. We have found that, in the paramagnetic phase of bulk Sm, the trivalent valence state is more stable at the observed lattice constant than the divalent valence state.

  • PDF

Temperature dependence of photocurrent spectra for $AgInS_2$ epilayers grown by hot wall epitaxy

  • Baek, Seung-Nam;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.123-124
    • /
    • 2007
  • A silver indium sulfide ($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the liteniture. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The temperature dependence of the energy band gap of the $AgInS_2$ obtained from the photocurrent spectrum was well described by the Varshni's relation, $E_g(T)=\;E_g(0)\;eV-(7.78\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;116\;K\;K)$. Also, Eg(0) is the energy band gap at 0 K, which is estimated to be 2.036 eV at the valence band state A and 2.186 eV at the valence band state B.

  • PDF

Investigation of the Electronic Structure of Mn12 Molecular Magnet Using Synchrotron Radiation

  • Kang, J.S.;Kim, J. H.;Kim, Yoo-Jin;Jeon, Won-Suk;Jung, Duk-Young;Han, S.W.;Kim, K.H.;Kim, K.J.;Kim, B.S.;Shim, J.H.;Min, B.I.
    • Journal of Magnetics
    • /
    • v.8 no.4
    • /
    • pp.149-152
    • /
    • 2003
  • The electronic structure of Mn12-Ac molecular magnet has been investigated using synchrotron radiation. The valence-band photoemission spectroscopy (PES) measurement reveals that Mn 3d states are located near the top of the valence band. The trend in the measured valence-band PES spectra is found to be consistent with that in the calculated local density of states. The Mn 2p x-ray absorption spectroscopy (XAS) measurement provides evidence for the Mn$^{3+}$-Mn$^{4+}$ mixed-valent states.

Valence Band Photoemission Study of the Kondo Insulator CeNiSn

  • Kang, J.S.;Olson, C.G.;Ouki, Y.
    • Journal of Magnetics
    • /
    • v.2 no.4
    • /
    • pp.111-115
    • /
    • 1997
  • The electronic structure of the Kondo insulator CeNiSn has been investigated by using photoemission spectroscopy. A satellite feature is observed in the valence band spectrum about 6 eV below the Ni 3d main peak, indicating a strong Ni 3d Coulomb correlation in CeNiSn. The Ce 4f partial spectral weight exhibits three peak structures, including one due to the 4f1\longrightarrow4f0 transition, another near EF, and the other which overlaps the Ni 3d main peak. We interpret the peak near EF as reflecting mainly the Ce 4f/Sn 5p hybridization, whereas that around the ni 3d main peak as reflecting both the Ce 4f/Ni 3d and Ce 5d/Ni 3d hybridization. Yield measurements across the 4d\longrightarrow4f threshold indicate the Ce valence to be close to 3+. The prominent Fermi edge suggests a metallic ground state in CeNiSn.

  • PDF

Gapped Nearly Free-Standing Graphene on an SiC(0001) Substrate Induced by Manganese Atoms

  • Hwang, Jinwoong;Lee, Ji-Eun;Kang, Minhee;Park, Byeong-Gyu;Denlinger, Jonathan;Mo, Sung-Kwan;Hwang, Choongyu
    • Applied Science and Convergence Technology
    • /
    • v.27 no.5
    • /
    • pp.90-94
    • /
    • 2018
  • The electron band structure of manganese-adsorbed graphene on an SiC(0001) substrate has been studied using angle-resolved photoemission spectroscopy. Upon introducing manganese atoms, the conduction band of graphene, that is observed in pristine graphene indicating intrinsic electron-doping by the substrate, completely disappears and the valence band maximum is observed at 0.4 eV below Fermi energy. At the same time, the slope of the valence band decreases by the presence of manganese atoms, approaching the electron band structure calculated using the local density approximation method. The former provides experimental evidence of the formation of nearly free-standing graphene on an SiC substrate, concomitant with a metal-to-insulator transition. The latter suggests that its electronic correlations are efficiently screened, suggesting that the dielectric property of the substrate is modified by manganese atoms and indicating that electronic correlations in grpahene can also be tuned by foreign atoms. These results pave the way for promising device application using graphene that is semiconducting and charge neutral.

Photoemission study f valence stated in Eu chalcogenides

  • Hoon Koh;Park, Won-Go;Oh, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.166-166
    • /
    • 2000
  • We studied electronic structure of magnetic semiconductors EuO, EuS, and EuTe. The photoemission spectra show localized Eu 4f states and broad anion p bands. As the size of anion increases from oxygen to tellurium, anion p band width increases and eventually overlaps Eu 4f states. Hence in EuO and EuS, Eu 4f states are the highest occupied stated lying above anion p band, while Te 5p band spreads widely over Eu 4f states to become valence band maximum in EuTe. It was also observed that Eu 4f states have width of 0.7eV and dispersion of 0.2eV in EuS by angle resolved photoemission spectroscopy. The width of the 4f spectra mainly originates from atomic multiplets, but the much larger dispersion than that of Eu metal is due to p-f mixing.

  • PDF

Measurement of Secondary Electron Emission Coefficient and Bimolecular Valence Band Energy Structure of Erythrocyte with and Without Bioplasma Treatment

  • Lee, Jin-Young;Baik, Guyon;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.483-483
    • /
    • 2012
  • Recently, nonthermal bioplasma has been attracted by researchers due to their potentials to modulate cellular functions resulting in changes of biomolecular electron band structures as well as cell morphologies. We have investigated the secondary electron emission characteristics from the surface of the erythrocyte, i.e., red blood cell (RBC) with and without the nonthermal bioplasma treatment in morphological and biomolecular aspects. The morphologies have been controlled by osmotic pressure and biomolecular structures were changed by well known reactive oxygen species. Ion-induced secondary electron emission coefficient have been measured by using gamma-focused ion beam (${\gamma}$-FIB) system, based on the quantum mechanical Auger neutralization theory. Our result suggests that the nonthermal bioplasma treatment on biological cells could result in change of the secondary electron emission coefficient characterizing the biomolecular valence band electron energy structures caused by the cell morphologies as well as its surface charge distributions.

  • PDF

Valence band of graphite oxide

  • Jeong, Hye-Gyeong;Kim, Gi-Jeong;Kim, Bong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.321-321
    • /
    • 2011
  • We have investigated the electronic structure of graphite oxide by photoelectron spectroscopy at the Pohang Accelerator Laboratory, Korea. The typical sp2 hybridization states found in graphite were also seen in graphite oxide. However, the ${\pi}$ state disappeared near the Fermi level because of bonding between the ${\pi}$ and oxygen-related states originating from graphite oxide, indicating electron transfer from graphite to oxygen and resulting in a downward shift of the highest occupied molecular orbital (HOMO) state to higher binding energies. The band gap opening increased to about 1.8 eV, and additional oxygen-related peaks were observed at 8.5 and 27 eV.

  • PDF

Opto-electric properties for the $AgInS_2$ epilayers grown by hot wall epitaxy (Hot wall epitaxy법에 의해 성장된 $AgInS_2$ 박막의 광전기적 특성)

  • Lee, K.G.;Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.267-270
    • /
    • 2004
  • A silver indium sulfide($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high qualify crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks. are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\ddot{A}cr$, and the spin orbit splitting, $\ddot{A}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_g(T)$, was determined.

  • PDF