• Title/Summary/Keyword: Vacuum sintering

Search Result 204, Processing Time 0.029 seconds

Growth, Structure, and Stability of Ag on Ordered ZrO2(111) Films

  • Han, Yong;Zhu, Junfa;Kim, Ki-jeong;Kim, Bongsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.204.2-204.2
    • /
    • 2014
  • Among various metal oxides, ZrO2 is of particular interests and has received widespread attention thanks to its ideal mechanical and chemical stability. As a cheap metal, Ag nanoparticles are also widely used as catalysts in ethylene epoxidation and methanol oxidation. However, the nature of Ag-ZrO2 interfaces is still unknown. In this work, the growth, interfacial interaction and thermal stability of Ag nanoparticles on ZrO2(111) film surfaces were studied by low-energy electron diffraction (LEED), synchrotron radiation photoemission spectroscopy (SRPES), and X-ray photoelectron spectroscopy (XPS). The ZrO2(111) films were epitaxially grown on Pt(111). Three-dimensional (3D) growth model of Ag on the ZrO2(111) surface at 300 K was observed with a density of ${\sim}2.0{\times}1012particles/cm2$. The binding energy of Ag 3d shifts to low BE from very low to high Ag coverages by 0.5 eV. The Auger parameters shows the primary contribution to the Ag core level BE shift is final state effect, indicating a very weak interaction between Ag clusters and ZrO2(111) film. Thermal stability experiments demonstrate that Ag particles underwent serious sintering before they desorb from the zirconia film surface. In addition, large Ag particles have stronger ability of inhibiting sintering.

  • PDF

Effect of Metallic Binder Composition on Microstructure and Hardness of (W,Ti)C Cemented Carbides ((W,Ti)C계 초경합급의 미세조직 및 경도에 미치는 금속 결합재 조성의 영향)

  • Daoush, Walid M.;Lee, Kyong-H.;Park, Hee-S.;Jang, Jong-J.;Hong, Soon-H.
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.208-214
    • /
    • 2007
  • The microstructure and hardness of (W,Ti)C cemented carbides with a different metallic binder composition of Ni and Co fabricated by powder technology were investigated. The densifications of the prepared materials were accomplished by using vacuum sintering at $1450^{\circ}C$. Nearly full dense (W,Ti)C cemented carbides were obtained with a relative density of up to 99.7% with 30 wt.% Co and 99.9% with 30 wt.% Ni as a metallic binder. The average grain size of the (W,Ti)C-Co and the (W,Ti)C-Ni was decreased by increasing the metallic binder content. The hardness of the dense (W,Ti)C-15 wt%Co and (W,Ti)C-15 wt%Ni, was greater than that of the other related cemented carbides; in addition, the cobalt-based cemented carbides had greater hardness values than the nickel-based cemented carbides.

Bendable Photoelectrodes by Blending of Polymers with $TiO_2$ For Low Temperature Dye-sensitized Solar Cells

  • Yu, Gi-Cheon;;Lee, Do-Gwon;Kim, Gyeong-Gon;Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.319-319
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) based on plastic substrates have attracted much attention mainly due to extensive applications such as ubiquitous powers, as well as the practical reasons such as light weight, flexibility and roll-to-roll process. However, conventional high temperature fabrication technology for glass based DSSCs, cannot be applied to flexible devices because polymer substrates cannot withstand the heat more than $150^{\circ}C$. Therefore, low temperature fabrication process, without using a polymer binder or thermal sintering, was required to fabricate necked $TiO_2$. In this presentation, we proposed polymer-inorganic composite photoelectrode, which can be fabricated at low temperature. The concept of composite electrode takes an advantage of utilizing elastic properties of polymers, such as good impact strength. As an elastic material, poly(methyl methacrylate) (PMMA) is selected because of its optical transparency and good adhesive properties. In this work, a polymer-inorganic composite electrode was constructed on FTO/glass substrate under low temperature sintering condition, from the mixture of PMMA and $TiO_2$ colloidal solution. The effect of PMMA composition on the photovoltaic property was investigated. Then, the enhanced mechanical stability of this composite electrode on ITO/PEN substrate was also demonstrated from bending test.

  • PDF

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • Raihanuzzaman, Rumman Md.;Song, Jun-U;Tak, Byeong-Jin;Hong, Hyeon-Seon;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

Spark plasma sintering 소결법에 의해 제작 된 Ti-Al-Si 합금타겟의 물성과 합금타겟을 이용하여 제작한 박막에 관한 연구

  • Lee, Han-Chan;Jeong, Deok-Hyeong;Mun, Gyeong-Il;Lee, Bung-Ju;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.237.1-237.1
    • /
    • 2013
  • Ti 와 Al 은 금속간의 화합물이 내산화성에 우수한 성질을 가지고 있으며 낮은 밀도와 고온에도 큰 변화가 없는 성질을 가지고 있다. 그리하여 내식 및 부식 관련 연구나 고온재료를 필요로 하는 우주, 엔진 제품 등에 많은 연구가 진행되고 있다. 또한 Ti-Al-N 박막은 경도가 우수하여 고속 공구 부품에 널리 사용되고 있으며 최근 Ti-Al-N 에 Si 첨가로 인하여 40 GPa 이상의 고경도와 1,000도 이상의 산화온도를 지닌 나노 혼합물 코팅을 형성 시키는 것으로 알려져 있다. 본 연구에서는 Ti, Al, Si 원분말을 PBM (Planetary Ball Milling) 방법을 사용하여 Ti-Al-Si 혼합분말로 제조하고, 제조된 분말들은 SPS (Spark Plasma Sintering) 공정을 통하여 Ti-Al-Si 합금타겟을 제작하였다. 제작된 Ti-Al-Si 합급타겟을 사용한 Sputtering 공정을 수행하여 Ti-Al-Si 3원계 박막을 증착하였다. 그 결과 기존 Ti (82 ${\mu}m$), Al (32 ${\mu}m$), Si (16 ${\mu}m$) 크기의 원분말들이 PBM (Planetary Ball Milling) 공정 후 Ti-Al-Si (18 ${\mu}m$) 로 입도가 작아진 것을 확인 할 수 있었고, 소결 후 타겟이 99% 이상의 높은 밀도를 가졌으며 원분말의 조성과 동일한 조성을 가진 타겟이 제작되었음을 확인하였다. Ti-Al-Si 타겟의 경도는 약 1,000 Hv 이상의 값을 보였으며, Ti-Al-Si-N 박막의 경우 타겟의 조성과 동일하였고 경도는 약 35 GPa 로 높은 경도 값을 가지는 것을 확인하였다. 내산화 테스트 결과 Ti-Al-Si-N 박막은 1,000도 에서도 박막의 손상이 가지 않았다.

  • PDF

A Study on the Manufacturing of Large Size Hollow Shape Parts for Prototype-Car using Rapid Prototyping Technology and Vacuum Molding (쾌속조형 기술과 진공성형법을 이용한 시작차량용 대형 중공 부품의 제작에 관한 연구)

  • 박경수;양화준;최경현;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.362-365
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have revolutionized traditional manufacturing methods. These techniques allow the user to fabricate a part directly from a conceptual model before investing in production tooling and help develop new models with significant short time. This paper suggests to new process to manufacture large size hollow shape parts for prototype-car using Rapid Prototyping technology and Vacuum Molding with the reduction of delivery time. In addition, This paper introduces the dividing and combining method to make large size RP master model in spite of the limit of the build chamber dimensions of commercialized RP system and post-processing method to achieve sufficient surface quality.

  • PDF

Fabrication of Fe-Cr-Al Porous Metal with Sintering Temperature and Times (소결 온도와 유지 시간에 따른 Fe-Cr-Al 다공성 금속의 제조)

  • Koo, Bon-Uk;Lee, Su-In;Park, Dahee;Yun, Jung-Yeul;Kim, Byoung-Kee
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.100-104
    • /
    • 2015
  • The porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability. The Fe-Cr-Al alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. And then many researches are developed the Fe-Cr-Al porous metals for exhaust gas filter, hydrogen reformer catalyst support and chemical filter. In this study, the Fe-Cr-Al porous metals are developed with Fe-22Cr-6Al(wt) powder using powder compaction method. The mean size of Fe-22Cr-6Al(wt) powders is about $42.69{\mu}m$. In order to control pore size and porosity, Fe-Cr-Al powders are sintered at $1200{\sim}1450^{\circ}C$ and different sintering maintenance as 1~4 hours. The powders are pressed on disk shapes of 3 mm thickness using uniaxial press machine and sintered in high vacuum condition. The pore properties are evaluated using capillary flow porometer. As sintering temperature increased, relative density is increased from 73% to 96% and porosity, pore size are decreased from 27 to 3.3%, from 3.1 to $1.8{\mu}m$ respectively. When the sintering time is increased, the relative density is also increased from 76.5% to 84.7% and porosity, pore size are decreased from 23.5% to 15.3%, from 2.7 to $2.08{\mu}m$ respectively.

Production of Dispersion-strengthened Cu-TiB2 Alloys by Ball-milling and Spark-plasma Sintering

  • Kwon, Dae-Hwan;Kum, Jong-Won;Nguyen, Thuy Dang;Dudinad, Dina;Choi, Pyuck-Pa;Kim, Ji-Soon;Kwon, Young-Soon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1205-1206
    • /
    • 2006
  • Dispersion-strengthened copper with $TiB_2$ was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at $650^{\circ}C$ for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly

  • PDF

Sintering of $\alpha{\;}-{\;}Al_2O_3$ with NaOH (가성소다를 이용한 $\alpha{\;}-{\;}Al_2O_3$의 소결반응)

  • 김재용;이진수;서완주;박수길;엄명헌
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2000
  • This study was investigated to the reaction of alumina sintering with alkaline. The soluble $NaAlO_2$ was made after the commercial ${\alpha}-Al_2O_3$ was calcinated with NaOH. The reaction of alumina was carried out to be based on the effects of calcination temperature, time, and the mixing ratio of ${\alpha}-Al_2O_3/NaOH$. The alumina was calcined over $500^{\circ}C$ with NaOH powder after it was sieved with 170/270 mesh. The calcined alumina with NaOH powder was dissolved into $25^{\circ}C$ distilled water and filtrated, and HCI was added to adapt pH 6.5~7.5. The residue was separated with vacuum pump for filtration after it was adapted to proper pH, and aluminum compound was precipitated with $Al(OH)_3$. The investigation was carried out with the variables; the calcination temperature($500-900^{\circ}C$), the calcination time (30~90 min), and the concentration of HCI when leaching(0.5~3.0N) respectively. In this investigation, the main product of ${\alpha}-Al_2O_3$ and NaOH was $NaAlO_2$ and the maximum conversion ratio was 91.4% under the optimum conditions as followed ; the ratio of NaOH/${\alpha}-Al_2O_3$ was 1.5 and the calcination conditions were $800^{\circ}C$ and 90 min.

  • PDF

Spark Plasma Sintering of Fe-TiC Composite Powders (Fe-TiC 복합재료분말의 방전플라즈마소결)

  • Lee, Yong-Heui;Hyunh, Xuan-Khoa;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.382-388
    • /
    • 2014
  • Fe-TiC composite powder was fabricated by high-energy milling of powder mixture of (Fe, TiC) and (FeO, $TiH_2$, C) as starting materials, respectively. The latter one was heat-treated for reaction synthesis of TiC phase after milling. Both powders were spark-plasma sintered at various temperatures of $680-1070^{\circ}C$ for 10 min. with sintering pressure of 70 MPa and the heating rate of $50^{\circ}C/min$. under vacuum of 0.133 Pa. Density and hardness of the sintered compact was investigated. Fe-TiC composite fabricated from (FeO, $TiH_2$, C) as starting materials showed better sintered properties. It seems to be resulted from ultra-fine TiC particle size and its uniform distribution in Fe-matrix compared to the simply mixed (Fe, TiC) powder.