• Title/Summary/Keyword: Vacuum plasma

Search Result 1,750, Processing Time 0.038 seconds

Measurement of plasma potential by a biased cut off probe

  • Kim, Dae-Ung;Kim, Jeong-Hyeong;Seong, Dae-Jin;Yu, Sin-Jae;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.465-465
    • /
    • 2010
  • Cut off probe, the efficient method, can measure the plasma parameters like the plasma electron density and the electron temperature. Plasma potential is also one of the important parameters in plasma processing but cannot be measured by cut off probe yet. Thus we developed method to measure plasma potential by focusing on relation between bias on a tip and sheath around tip. The system consist of a ICP(Inductive Coupled Plasma) source, a Network analyzer and a bias tee that can be bridge apply DC voltage on the cut off probe tip. Plasma potential is identified by using this system. The results corresponded well with the measured results by single langmuir probe(SLP).

  • PDF

Extreme Ultraviolet Plasma and its Emission Characteristics Generated from the Plasma Focus in Accordance with Gas Pressure for Biological Applications

  • Kim, Jin Han;Lee, Jin Young;Kim, Sung Hee;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.178.2-178.2
    • /
    • 2013
  • Conventional ultraviolets A,B,C are known to be very important factor of killing, changing surface properties of biological cells and materials. It is of great importance to investigate the influence of extreme ultraviolet (EUV) exposure on the biological cell. Here we have studied high density EUV plasma and its emission characteristics, which have been generated by plasma focus device with hypercycloidal pinch (HCP) electrode under various Ar gas pressures ranged from 30~500 mTorr in this experiment. We have also measured the plasma characteristics generated from the HCP plasma focus device such as electron temperature by the Boltzman plot, plasma density by the Stark broading method, discharge images by open-shuttered pin hole camera, and EUV emission signals by using the photodiode AXUV-100 Zr/C.

  • PDF

Study on Validity and Reliablity of the Cutoff Probe and Langmuir Probe via Comparative Experiment in the Processing Plasma

  • Kim, D.W.;You, S.J.;You, K.H.;Lee, J.W.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.576-576
    • /
    • 2013
  • Recently, diagnostics of plasma becomes more important due to requirement of precise control of plasma processing based on measurement of plasma characteristics. The Langmuir probe has been used for the diagnostics but it has an inevitable uncertainty and error sources such as incorrect tip length and RF noise. Instead of the Langmuir probe, various diagnostic methods have been developed and researched. The cutoff probe is promising one for plasma density using microwaves and resonance phenomenon at the plasma frequency. The cutoff probe has various advantages as follows; (i) it is simple and robust, (ii) it uses few assumptions, and (iii) it is free from deposition by reactive gas. However, the cutoff probe also has uncertainty and error sources such as gap between tips, tip length, direction of tip plane, and RF noise. In this study, the uncertainty and error sources in manufacturing both probes and in diagnostics process were analyzed via comparative experiment at various discharge conditions. Furthermore, to reveal the user dependence of both probes, three well trained Ph. D students made the Langmuir probe and the cutoff probe, respectively, and it were analyzed. Thought this study, it is established that reliability and validity of the Langmuir probe and the cutoff probe related with not only the intrinsic characteristics of probes but also probe user.

  • PDF

Research to Achieve Uniform Plasma in Multi-ground Capacitive Coupled Plasma

  • Park, Gi-Jeong;Lee, Yun-Seong;Yu, Dae-Ho;Lee, Jin-Won;Lee, Jeong-Beom;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.247.1-247.1
    • /
    • 2014
  • The capacitive coupled plasma is used widely in the semiconductor industries. Especially, the uniformity of the industrial plasma is heavily related with defect ratio of devices. Therefore, the industries need the capacitive coupled plasma source which can generate the uniform plasma and control the plasma's uniformity. To achieving the uniformity of the large area plasma, we designed multi-powered electrodes. We controlled the uniformity by controlling the power of each electrode. After this work, we started to research another concept of the plasma device. We make the plasma chamber that has multi-ground electrodes imaginary (CST microwave studio) and simulate the electric field. The shape of the multi-ground electrodes is ring type, and it is same as the shape of the multi-power electrodes that we researched before. The diameter of the side electrode's edge is 300mm. We assumed that the plasma uniformity is related with the impedance of ground electrodes. Therefore we simulated the imaginary chamber in three cases. First, we connected L (inductor) and C (capacitor) at the center of multi-ground electrodes. Second, we changed electric conductivity of multi-ground electrode. Third, we changed the insulator's thickness between the center ground electrode and the side ground electrode. The driving frequency is 2, 13.56 and 100 MHz. We switched our multi-powered electrode system to multi-ground electrode system. After switching, we measured the plasma uniformity after installing a variable vacuum capacitor at the ground line. We investigate the effect of ground electrodes' impedance to plasma uniformity.

  • PDF

A Study on Plasma Corrosion Resistance and Cleaning Process of Yttrium-based Materials using Atmospheric Plasma Spray Coating (Atmospheric Plasma Spray코팅을 이용한 Yttrium계 소재의 내플라즈마성 및 세정 공정에 관한 연구)

  • Kwon, Hyuksung;Kim, Minjoong;So, Jongho;Shin, Jae-Soo;Chung, Chin-Wook;Maeng, SeonJeong;Yun, Ju-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the plasma corrosion resistance and the change in the number of contamination particles generated using the plasma etching process and cleaning process of coating parts for semiconductor plasma etching equipment were investigated. As the coating method, atmospheric plasma spray (APS) was used, and the powder materials were Y2O3 and Y3Al5O12 (YAG). There was a clear difference in the densities of the coatings due to the difference in solubility due to the melting point of the powdered material. As a plasma environment, a mixed gas of CF4, O2, and Ar was used, and the etching process was performed at 200 W for 60 min. After the plasma etching process, a fluorinated film was formed on the surface, and it was confirmed that the plasma resistance was lowered and contaminant particles were generated. We performed a surface cleaning process using piranha solution(H2SO4(3):H2O2(1)) to remove the defect-causing surface fluorinated film. APS-Y2O3 and APS-YAG coatings commonly increased the number of defects (pores, cracks) on the coating surface by plasma etching and cleaning processes. As a result, it was confirmed that the generation of contamination particles increased and the breakdown voltage decreased. In particular, in the case of APS-YAG under the same cleaning process conditions, some of the fluorinated film remained and surface defects increased, which accelerated the increase in the number of contamination particles after cleaning. These results suggest that contaminating particles and the breakdown voltage that causes defects in semiconductor devices can be controlled through the optimization of the APS coating process and cleaning process.

A Study on Acoustic Emission Characteristics of MCrAlY Coated Material by Vacuum Plasma Spray Process (진공 플라즈마 용사공정에 의한 MCrAlY코팅재의 음향방출 신호 특성 연구)

  • 박진효;이구현;예경환;김정석;강명창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.921-924
    • /
    • 2004
  • This paper is to investigate a crack for plasma sprayed MCrAlY coated material by acoustic emission method in 4-point bending test. The CoNiCrAlY is coated on Inconel-718 by vacuum plasma spray process. Micro-hardness measurement was conducted by means of Micro Vickers-hardness indentor. The porosity of coating layer was measured using a SEM and Image Analyzer. AE monitoring system is composed of PICO type sensor, a wide band preamplifier(40dB), a PC and AE DSP(16/32 PAC) board. The AE count, Hit and energy of coating specimens is measured according to coating thickness.

  • PDF