• Title/Summary/Keyword: Vacuum induction melting (VIM)

Search Result 14, Processing Time 0.02 seconds

Manufactures of dental casting Co-Cr-Mo based alloys in addition to Sn, Cu and analysis of infrared thermal image for melting process of its alloys (Sn 및 Cu를 첨가한 치과 주조용 Co-Cr-Mo계 합금제조 및 용해과정 분석)

  • Kang, Hoo-Won;Park, Young-Sik;Hwang, In;Lee, Chang-Ho;Heo, Yong;Won, Yong-Gwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.141-147
    • /
    • 2014
  • Purpose: Dental casting #Gr I (Co-25Cr-5Mo-3Sn-1Mn-1Si), #Gr II (Co-25Cr-5Mo-5Cu-1Mn -1Si) and #Gr III (Co-25Cr-5Mo-3Sn-5Cu-1Mn-1Si) master alloys of granule type were manufactured the same as manufacturing processes for dental casting Ni-Cr and Co-Cr-Mo based alloys of ingot type. These alloys were analyzed melting processes with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer. Methods: These alloys were manufactured such as; alloy design, the first master alloy manufatured using vacuum arc casting machine, melting metal setting in crucible, melting in VIM, pouring in the mold of bar type, cutting the gate and runner bar and polishing. These alloys were put about 30g/charge in the ceramic crucible of high frequency induction centrifugal casting machine and heat, Infrared thermal image analyzer indicated alloys in the crucible were set and operated. Results: The melting temperatures of these alloys measuring infrared thermal image analyzer were decreased in comparison with remanium$^{(R)}$ GM 800+, vera PDI$^{TM}$, Biosil$^{(R)}$ f, WISIL$^{(R)}$ M type V, Ticonium 2000 alloys of ingot type and vera PDS$^{TM}$(Aabadent, USA), Regalloy alloys of shot type. Conclusion: Co-Cr-Mo based alloy in addition to Sn(#Gr I alloy) were decreased the melting temperature with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer.

Development of High Strength Microalloyed Steel for Cold Forming by Controlled Rolling and Cooling Technology (제어압연${\cdot}$제어냉각기술을 이용한 고강도 냉간성형용 비조질강의 개발)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.321-324
    • /
    • 2005
  • The main purpose of the present study has been placed on investigating the effects of controlled rolling and cooling on the microstructures and mechanical properties of C-Si-Mn-V steels for cold forming. The steels were manufactured in vacuum induction melting(VIM) furnace and casted to 1.1ton Ingots and the ingots were forged to $\Box150$ billet. The forged billets were reheated in walking beam furnace and rolled to coil, the stocks were rolled by Controlled Rolling and Cooling Technology (CRCT), so rolled at low temperature by water spraying applied in rolling stage and acceleratly cooled before coiling. Rolled coils were cold drawed to the degree of $27\%$ of area reduction without heat treatment. Microstructual observation, tensile test, compression test and charpy impact tests were conducted. The mechanical properties of the steels were changed by area reduction of cold drawing and it is founded that there are optimum level of cold drawing to minimize compression stress for these steels. From the result of this study, it is conformed that mechanical properties and microstructure of C-Si-Mn-V steels for cold forming were enhanced by accelerated cooling and founded optimum level of cold drawing.

  • PDF

Forged Product Characteristic and Cold Rolling Simulation for High-Nitrogen Stainless Steel (HNS) (TP304계 고질소 스테인레스강의 단조특성과 냉간압연 모사)

  • Lee, M.R.;Lee, J.W.;Kim, B.K.;Kim, Y.D.;Shin, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.310-313
    • /
    • 2009
  • Several high nitrogen stainless steel ingots(100kg) were fabricated with changing Ni and $[N]_2$ contents by Pressurized Vacuum Induction Melting(P_VIM). After free forging process, chemical compositions, microstructure and mechanical properties were estimated. Hardness was increased with the increase of $[N]_2$ content. Furthermore, microstructure including a lot of tempering twins was observed with optical microscope. Mechanical properties were estimated as function of solution treatment temperature and cooling method(air/water) under duration time of 1 hr on sample that were fabricated with Ni content under the atmospheric $[N]_2$ pressure. At solution treatment range of $1050{\sim}1100^{\circ}C$, hardness was decreased with the increase of solution temperature and there were little discrepancy of microstructure and hardness with cooling method. Computer simulation was carried out in order to inspect pass schedule in cold rolling process. When the condition of simulation was roll speed of 2.5mpm, rolling rate $15{\sim}17%$ per pass, it was ascertained that the formation such as deformation by sticking and lamellar sliver etc. was restricted from a simulation.

  • PDF

Investigation on Resistance to Hydrogen Embrittlement of High Nitrogen Austenitic Steels for Hydrogen Pipe by the Disc Pressure Test and the Tensile Test on Hydrogen Pre-charged Specimens (디스크 시험 및 수소처리 인장시험에 의한 수소배관용 고질소 스테인리스강의 내수소취성 평가 연구)

  • Dong-won, Shin;Min-kyung, Lee;Jeong Hwan, Kim;Ho-seong, Seo;Jae-hun, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.16-23
    • /
    • 2022
  • In this study, characteristics of effect on hydrogen gas was investigated to hydrogen embrittlement by disk and tensile tests. The developed and commercial alloy was fabricated to a plate material made from an alloy ingot. The prepared materials were processed in the form of a disk to measure rupture pressure by hydrogen and helium gas at a rate of 0.1 to 1,000 bar/min. In the hydrogen pre-charged tensile test, a specimen was hydrogenated using an anode charging method, and the yield strength, ultimate tensile strength, elongation, and reduction in area rate were carried by a strain rate test. Also, the microstructure was observed to the fracture surface of the tensile test specimen. As a result, the developed materials satisfied endurable hydrogen embrittlement, and the fractured surface showed a brittleness fracture surface with a depth of several ㎛, but dimple due to ductile fracture could be observed.