• Title/Summary/Keyword: Vacuum exhaust

Search Result 96, Processing Time 0.028 seconds

An Experimental Study on Performance of Second Throat Exhaust Diffusers of Different Configuration (2차목 초음속 디퓨저의 형상 변화에 따른 성능에 관한 실험적 연구)

  • Jeon, Jun Su;Kim, Wan Chan;Yeoun, Hae In;Kim, Min Sang;Ko, Young Sung;Han, Young Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.279-288
    • /
    • 2014
  • Second throat supersonic exhaust diffusers (STEDs) were designed to simulate high-altitude conditions according to the normal-shock model. Experimental studies were performed on the STEDs to investigate how performance characteristics varied with the length and diameter of the STED using high-pressure nitrogen gas. The variation in performance due to length indicated that the performance of the STED could be very slightly improved by adjusting the diffuser inlet length ($L_d$), and it could be significantly improved by optimizing the second throat length ratio ($L_{st}/D_{st}$) and the divergence length ($L_s$). The starting and vacuum chamber pressures exhibited the highest level of performance near ($A_d/A_{st}$) of the design point.

Exhaust Noise Reduction of Dry vacuum Pump (건식진공펌프의 배기 소음 저감)

  • Ahn, Young-Chan;Lee, Hae-Jin;Lee, Jung-Yoon;Yang, Jung-Jik;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.349-354
    • /
    • 2007
  • This paper considers acoustic analysis of silencer within a Dry vacuum pump. Main object is noise reduction of Dry Vacuum Pump using the silencer. First, we measured SPL and Intensity for noise source identification and then, designed for the silencer corresponding with noise character. 4-pole parameter are used for predicting transmission loss which is one of characteristics of silencer when we designed for silencer. Calculated Transmission Loss to change main effective factor and selected to optimal value using Design of Experiment. Finally, noise reduction is estimated to compare existing silencer with optimal silencer.

  • PDF

Development and Performance Test of In-situ Particle Monitoring System using Ion-counter in Vacuum Environments (진공 환경내 실시간 입자 모니터링 시스템의 개발 및 성능평가)

  • Ahn Kang-Ho;Kim Yong-Min;Kwon Yong-Taek
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.45-49
    • /
    • 2006
  • In this paper, a new method that monitors the quantity of particles using ion-counter in vacuum environment is introduced. In-situ particle monitoring (ISPM) system is composed by Gerdien type ion-counter (house-made), DC power supply and electrometer. The ion-counter applied by positive voltage detects only positive charged particles. Therefore the particles to be detected should be in known charge state for further data analysis. ion-counter is installed at the exhaust line of process equipment where the pressure loss is structurally low. ISPM system performance has been verified with SMPS (Scanning Mobility Particle Sizer) system. The correlation coefficient is above 0.98 at the particle size range of $20{\sim}300nm$ in diameter with identified charge distribution under $0.1{\sim}10.0$ Torr.

  • PDF

Exhaust Noise Reduction of Dry Vacuum Pump (건식 진공 펌프의 배기 소음 저감)

  • Ahn, Young-Chan;Lee, Hae-Jin;Park, Sang-Gil;Lee, You-Yub;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.950-957
    • /
    • 2007
  • This paper considers acoustic characteristics of silencer within a dry vacuum pump. The main objective is to reduce noise in dry vacuum pump using the new designed silencer. First, SPL and sound intensity are measured for noise source identification and the new model silencer is designed corresponding to noise characteristics. 4-pole parameters are used to predict the transmission loss which is one of the interest characteristics of the new silencer. The calculated transmission loss is then used to change main effective factor and optimal value is selected by using design of experiment. By conducting an experiment, it is proved that the new designed silencer has reduced noise level by 6 dB(A) more than the original one.

The Experimental Analysis of Aerodynamic Sound for Fan Motor in a Vacuum Cleaner Using Laser 3-D Scanning Vibrometer and Microphone (레이저 3차원 진동측정기와 마이크로폰을 이용한 진공청소기용 팬모터의 실험적인 공력소음 분석)

  • Kwac Lee-Ku;An Jae-Sin;Kim Jae-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.46-51
    • /
    • 2005
  • The vacuum cleaner motor runs at very high speed for suction power. Specially, motor power is provided by the impeller being rotated at very high speed. The centrifugal fan consists of the impeller, the diffuser, and the circular casing. Due to the high rotating speed of the impeller and small gap distance between the impeller and the diffuser, the level of noise in the centrifugal fan is at BPF(Blade Passage Frequency) and its harmonic frequencies. In order to calculate the sound pressure of centrifugal fan, unsteady flow data are needed. The cause of noise is obtained by dividing the fluid noise by exhaust flow of fan and vibration noise by rotational vibration of vacuum cleaner fan motor. Until now, an accelerometer has been used to measure vibration. However, it can not measure vibration in some parts of brush and commutator because of motor construction and 3-D vibrating mode. This study was conducted to perform accurate analysis of vibration and aerodynamic sound for fan motor in a vacuum cleaner using a laser vibration analyzer. A silent fan motor can be designed using the data measured in this study.

Performance Characteristics of Secondary Throat Supersonic Exhaust Diffusers (2차목 초음속 디퓨저의 주요 설계 변수에 따른 성능 특성)

  • Park, Jin-Ho;Jeon, Jun-Su;Yu, I-Sang;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.641-644
    • /
    • 2011
  • The performance tests of secondary throat supersonic exhaust diffusers were carried out by using scaled down model and gas nitrogen. It was performed to find the performance characteristics according to diffuser inlet length(Ld), secondary throat length(Lst), divergence length(Ls). There was few change by diffuser inlet length(Ld), but starting pressures of the diffusers were effected by secondary throat length(Lst), divergence length(Ls). It was confirmed that starting pressure was not changed over 8 Lst/Dst.

  • PDF

Numerical Study for Design of Center-body Diffuser (Center-body 디퓨져 형상설계를 위한 수치적연구)

  • Kim, Jong-Rok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.487-491
    • /
    • 2009
  • A study is analyzed on the design factor of Center-body diffuser and performed on conceptual design of Center-body diffuser with Computational Fluid Dynamic. The flow field of Center-body diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\omega}$ turbulence model. The center-body diffuser is compared with second throat exhaust diffuser in terms of starting pressure, the degree of vacuum pressure, the design factor.

  • PDF

Application of Shock Generator to Supersonic Ejector Diffuser System (초음속 이젝터 디퓨져 시스템에서의 충격파 발생기 응용)

  • Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.200-203
    • /
    • 2011
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for high altitude testing (HAT) of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser (SED). This paper aims at the improvement in HAT facility by focusing attention on the vertical firing rocket test stand with shock generators. Shock generators are mounted inside the SED for improving the pressure recovery. The results clearly showed that the performance of the ejector-diffuser system was improved with the addition of shock generators. The improvement comes in the form of reduction of the starting pressure ratio and the vertical height of test stand. It is also shown that shock generators are useful in reducing the total pressure loss in the SED.

  • PDF

Fuzzy FMECA analysis of radioactive gas recovery system in the SPES experimental facility

  • Buffa, P.;Giardina, M.;Prete, G.;De Ruvo, L.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1464-1478
    • /
    • 2021
  • Selective Production of Exotic Species is an innovative plant for advanced nuclear physic studies. A radioactive beam, generated by using an UCx target-ion source system, is ionized, selected and accelerated for experimental objects. Very high vacuum conditions and appropriate safety systems to storage exhaust gases are required to avoid radiological risk for operators and people. In this paper, Failure Mode, Effects, and Criticality Analysis of a preliminary design of high activity gas recovery system is performed by using a modified Fuzzy Risk Priority Number to rank the most critical components in terms of failures and human errors. Comparisons between fuzzy approach and classic application allow to show that Fuzzy Risk Priority Number is able to enhance the focus of risk assessments and to improve the safety of complex and innovative systems such as those under consideration.

The KSTAR Vacuum Pumping and Fueling System Upgrade

  • Lim, J.Y.;Chung, K.H.;Cho, S.Y.;Lee, S.K.;Shin, Y.H.;Hong, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.39-39
    • /
    • 1999
  • The KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak is a nuclear fusion experimental device for a long pulse/steady-state plasma operation, adopting fully superconducting magnets. In accordance with completion of the basic design of the torus vacuum vessel and the enclosing cryostat, the vacuum pumping and gas fueling basic design has been developed to fulfil the physics requirements. The ultra-high vacuum pumping and sophisticated gas fueling system of the machine is essential to achieve such roles for optimized plasma performance and operation. Recently the vacuum exhaust system using dedicated pumping ports for the vacuum vessel and cryostat has been modified to meet more reliable and successful performance of the KSTAR[Fig. 1].In order to achieve the required base pressure of 5 x 10-9 torr, the total impurity load to the vessel internal is limited to ~5 x 10-5 torr-1/x, while the cryostat base pressure is kept as ~5 x 105 torr to mitigate the thermal load applied to the superconducting magnets. Each KSTAR fueling system will be separately capable of fueling gas at a rate of 50 torr-1/x, consistent with the given pumping throughput. In order to initiate a plasma discharge in KSTAR, the vacuum vessel is filled to a gas pressure of few 10-6 to few 10-4 torr, and additional gas injection is required to maintain and increase the plasma density during the course of the discharge period.

  • PDF