• Title/Summary/Keyword: Vacuum characteristics

Search Result 2,163, Processing Time 0.034 seconds

Evaluation of the required cooling capacity of the Cryocooler in the vacuum system (극저온냉동기 직냉형 진공시스템의 냉동부하 평가)

  • 홍용주;박성제;김효봉;최영돈
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.171-173
    • /
    • 2003
  • The cryostat or dewar have been widely used for making and maintaining cryogenic and vacuum environments. The thermal performances of such cryogenic vacuum system mainly depend on the radiation heat transfer between hot and cold surface The characteristics of radiation heat transfer are complicated, because amounts of heat transfer depend on view factor, emissivities, and areas of thermal elements. In this study, the analysis of the radiation heat transfer in the small cryogenic vacuum system was performed using the surface to surface radiation model for evaluation of the required cooling capacity of the cryocooler.

  • PDF

MgO Thin Film Characterization in a Vacuum In-line Sealing Process for High-efficiency PDP (고효율 PDP를 위한 진공 인라인 실장에서의 MgO 보호막 영향분석)

  • Kwon, Sang-Jik;Jang, Chan-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1019-1023
    • /
    • 2005
  • We have examined the electrical and optical characteristics of the plasma display panel produced by vacuum in-line sealing technology. In the MgO layer deposited at room temperature, after sealing at the panel temperature of $430^{\circ}C$, the luminous efficiency decreased compared with that of the panel before sealing. Moreover, firing and sustain voltage of the sealed panel increased compared with that of the panel before sealing. This was resulted from that the MgO protective layer was cracked by the softening of the dielectric layer during the sealing process. In order to avoid the MgO crack during the vacuum in-line sealing, thermally stable MgO layer or lower temperature sealing is required.

Discharge characteristics of MgO-PDP manufactured by using "all-in-vacuum" process

  • Yano, T.;Uchida, G.;Uchida, K.;Awaji, N.;Shinoda, T.;Kajiyama, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.28-30
    • /
    • 2009
  • PDP panels with MgO protective layer are manufactured by using the "all-in-vacuum" process we have established [1]. This is the process aiming to keep the MgO surface as clean as possible after the evaporation. The panels are evaluated in term of discharge voltage, aging time, luminance, luminous efficacy, discharge time-lag. It is confirmed that the "all-in-vacuum" process particularly improves the aging time, discharge voltage and the discharge time-lag.

  • PDF

The Characteristics of a Superposed Discharge Type Ozonizer Using Vacuum Discharge Tube (진공 방전관을 이용한 고농도 중첩방전형 오존발생기의 특성)

  • Song, Hyun-Jig;Lee, Chang-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.60-67
    • /
    • 2005
  • The superposed discharge type ozonizer of high ozone concentration using vacuum discharge tube has been designed and manufactured. It consists of three electrodes(central electrode, internal electrode, and external electrode) and one discharge gap(discharge gap between internal electrode and external electrode), is a superposed silent discharge type ozonizer for which the AC high voltages applied to the central electrode within discharge tube and the internal electrode has a $180{[^\circ]}$ phase difference and for which the external electrode is a ground. Ozone is generated by overlapping silent discharge between central electrode and external electrode, and silent discharge between internal electrode and external electrode. At the moment, discharge characteristics and ozone generation characteristics were investigated in accordance with vacuum of discharge tube, discharge power of ozonizer, and quantity of supplied oxygen gas. In consequence, high ozone concentration can be obtained 8840[ppm].

Basic Insulation Characteristics of Conduction-Cooled HTS SMES System (전도냉각 고온초전도 SMES 시스템의 기초절연 특성)

  • Choi Jae-Hyeong;Kwang Dong-Soon;Cheon Hyeon-Gweon;Kim Sang-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.404-410
    • /
    • 2006
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 40[K] should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. In order to take advantage of a greater critical current density of high temperature superconducting (HTS) and considerably reduce the size and weight of the system, conduction-cooled HTS superconducting magnetic energy storage (SMES) at temperatures well below 40[K] should be investigated. This work focuses on the breakdown and flashover phenomenology of dielectrics exposed in air and/or vacuum for temperatures ranging from room temperature to cryogenic temperature. Firstly, we summarize the insulation factors of the magnet for the conduction cooled HTS SMES. And Secondly a surface flashover as well as volume breakdown in air and/or vacuum with two kind insulators has been investigated. Finally, we will discuss applications for the HTS SMES including aging studies on model coils exposed in vacuum at cryogenic temperature. The commercial application of many conduction-cooled HTS magnets, however, requires refrigeration at temperatures below 40[K], in order to take advantage of a greater critical current density of HTS and reduce considerably the size and weight of the system. The magnet is driven in vacuum condition. The need to reduce the size and weight of the system has led to the consideration of the vacuum as insulating media. We are studying on the insulation factors of the magnet for HTS SMES. And we experiment the spacer configure effect in the dielectric flashover characteristics. From the results, we confirm that our research established basic information in the insulation design of the magnet.

Study on Validity and Reliablity of the Cutoff Probe and Langmuir Probe via Comparative Experiment in the Processing Plasma

  • Kim, D.W.;You, S.J.;You, K.H.;Lee, J.W.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.576-576
    • /
    • 2013
  • Recently, diagnostics of plasma becomes more important due to requirement of precise control of plasma processing based on measurement of plasma characteristics. The Langmuir probe has been used for the diagnostics but it has an inevitable uncertainty and error sources such as incorrect tip length and RF noise. Instead of the Langmuir probe, various diagnostic methods have been developed and researched. The cutoff probe is promising one for plasma density using microwaves and resonance phenomenon at the plasma frequency. The cutoff probe has various advantages as follows; (i) it is simple and robust, (ii) it uses few assumptions, and (iii) it is free from deposition by reactive gas. However, the cutoff probe also has uncertainty and error sources such as gap between tips, tip length, direction of tip plane, and RF noise. In this study, the uncertainty and error sources in manufacturing both probes and in diagnostics process were analyzed via comparative experiment at various discharge conditions. Furthermore, to reveal the user dependence of both probes, three well trained Ph. D students made the Langmuir probe and the cutoff probe, respectively, and it were analyzed. Thought this study, it is established that reliability and validity of the Langmuir probe and the cutoff probe related with not only the intrinsic characteristics of probes but also probe user.

  • PDF

Adsorption of residual gases on carbon nanotubes and their field emission properties

  • Lee, Han-Sung;Jang, Eun-Soo;Goak, Jeung-Choon;Kim, Jin-Hee;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.51-51
    • /
    • 2008
  • Carbon nanotubes (CNTs) have long been reported as an ideal material due to their excellent electrical conductivity and chemical and mechanical stability as well as their high aspect ratios for field emission devices. CNT emitters made by screen printing the organic binder-based CNT paste may act as a source to release gases inside a vacuum panel. These residual gases may cause a catastrophic damage by electrical arcing or ion bombardment to the vacuum microelectronic devices and may change their physical or electrical properties by adsorbing on the CNT emitter surface. In this study, we analyzed the composition of residual gases inside the vacuum-sealed panel by residual gas analyzer (RGA), investigating the effects of individual gases of different kinds at several pressures on the field emission characteristics of CNT emitters. The residual gases included $H_2$, CO, $CO_2$, $N_2$, $CH_4$, $H_2O$, $C_2H_6$, and Ar. Effect of residual gases on the field emission was studied by observing the variation of the pulse voltages with the duty ratio of3.3% to keep the constant emission current of $28{\mu}A$. Each gas species was introduced to a vacuum chamber up to three different pressures ($5\times10^{-7}$, $5\times10^{-6}$, and $5\times10^{-5}$ torr) each for 1 h while electron emission was continued. The three different pressure regions were separated by keeping a high vacuum of $\sim10^{-8}$ torr for a 1 h. The emission was terminated 6 h after the third gas exposure was completed. Field emission characteristics under residual gases will be discussed in terms of their adsorption and desorption on the surface of CNTs and the resultant change of work function.

  • PDF

Characteristics of Flow-Induced Noise in the Suction Nozzle of a Vacuum Cleaner with a Double-Blade Fan (이중 블레이드 팬이 장착된 진공청소기 브러쉬의 유동소음 특성)

  • Park, I-Sun;Sohn, Chae-Hoon;Oh, Jang-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.205-213
    • /
    • 2011
  • The characteristics of noise generation in the suction nozzle of a vacuum cleaner are analyzed numerically and experimentally. First, the flow resistance induced by each element in the suction nozzle of a vacuum cleaner with a double-blade rotary fan is investigated numerically and its relation with flow-induced noise and suction performance is examined in an anechoic room. The flow resistance and vorticity in the suction nozzle are calculated, and it is found that they are closely related to flow-induced noise and that the upper limit of noise reduction is only 4 dBA. This upper limit can be achieved by changing the design of the brush nozzle. Two methods for noise reduction by enlargement of flow-inlet area and by optimization of the number of blades are tested. Finally, the effects of each method are verified experimentally.

Aeroacoustic Characteristics and Noise Reduction of a Centrifugal Fan for a Vacuum Cleaner

  • Jeon, Wan-Ho;Rew, Ho-Seon;Kim, Chang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.185-192
    • /
    • 2004
  • The aeroacoustic characteristics of a centrifugal fan for a vacuum cleaner and its noise reduction method are studied in this paper. The major noise source of a vacuum cleaner is the centrifugal fan. The impeller of the fan rotates at over 30000 rpm, and generates very high-level noise. It was revealed that the dominant noise source is the aerodynamic interaction between the rotating impeller and stationary diffuser. The directivity of acoustic pressure showed that most of the noise propagates backward direction of the fan-motor assembly. In order to reduce the high tonal sound generated from the aerodynamic interaction, unevenly pitched impeller and diffuser, and tapered impeller designs were proposed and experiments were performed. Uneven pitch design of the impeller changes the sound quality while the overall sound power level (SPL) and the performance remains similar. The effect of the tapered design of impeller was evaluated. The trailing edge of the tapered fan is inclined. This reduces the flow interaction between the rotating impeller and the stationary diffuser because of some phase shifts. The static efficiency of the new impeller design is slightly lower than the previous design. However, the overall SPL is reduced by about 4 dB(A). The SPL of the fundamental blade passing frequency (BPF) is reduced by about 6 dB (A) and the 2$\^$nd/ BPF is reduced about 20 dB (A). The vacuum cleaner with the tapered impeller design produces lower noise level than the previous one, and the strong tonal sound was dramatically reduced.

Comparative Study on Microwave Probes for Plasma Density Measurement by FDTD Simulations

  • Kim, D.W.;You, S.J.;Na, B.K.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.218.1-218.1
    • /
    • 2014
  • In order to measure the absolute plasma density, various probes are proposed and investigated and microwave probes are widely used for its advantages (Insensitivity to thin non-conducting material deposited by processing plasmas, High reliability, Simple process for determination of plasma density, no complicate assumptions and so forth). There are representative microwave probes such as the cutoff probe, the hairpin probe, the impedance probe, the absorption probe and the plasma transmission probe. These probes utilize the microwave interactions with the plasma-sheath and inserted structure (probe), but frequency range used by each probe and specific mechanisms for determining the plasma density for each probe are different. In the recent studies, behaviors of each microwave probe with respect to the plasma parameters of the plasma density, the pressure (the collision frequency), and the sheath width is abundant and reasonably investigated, whereas relative diagnostic characteristics of the probes by a comparative study is insufficient in spite of importance for comprehensive applications of the probes. However, experimental comparative study suffers from spatially different plasma characteristics in the same discharge chamber, a low-reproducibility of ignited plasma for an uncertainty in external discharge parameters (the power, the pressure, the flow rate and so forth), impossibility of independently control of the density, the pressure, and the sheath width as well as expensive and complicate experimental setup. In this paper, various microwave probes are simulated by finite-different time-domain simulation and the error between the input plasma density in FDTD simulations and the measured that by the unique microwave spectrums of each probe is obtained under possible conditions of plasma density, pressure, and sheath width for general low-temperature plasmas. This result shows that the each probe has an optimum applicable plasma condition and reliability of plasma density measurement using the microwave probes can be improved by the complementary use of each probe.

  • PDF