• 제목/요약/키워드: Vacuum casting

검색결과 134건 처리시간 0.027초

진공 다이캐스팅 공법을 이용한 연료전지용 알루미늄 분리판의 제조 공정 (Fabrication Process of Aluminum Bipolar Plate for Fuel Cell using Vacuum Die Casting)

  • 진철규;강충길
    • 한국주조공학회지
    • /
    • 제31권2호
    • /
    • pp.71-78
    • /
    • 2011
  • This study aims to investigate the formability of bipolar plates for fuel cell fabricated by vacuum die casting of ALDC 6. Cavity shape of mold is thin walled plate (size: $200mm{\times}200mm{\times}0.8mm$) with a serpentine channel (active area: $50mm{\times}50mm$). Before bipolar plate was made by HPDC, computational filling behavior and solidification was performed by MAGMA soft. The final mold design for location and direction of channel was determined by computational simulation. Also, according to injection speed conditions, simulation result was compared to actual die casting experimental result. When vacuum pressure, injection speed of low and high region is 350 mbar, 0.3 m/s and 2.5 m/s respectively, products had few casting defects. On the other hand, at the same as injection speed, without vacuum pressure, products had many casting defects between end of the channel and overflow.

알콜탈수법에 의해 제조된 Mn-Zn Ferrite 미분체의 진공주입성형 (Vacuum Casting of Mn-Zn Ferrite Powders Prepared by Alcoholic Dehydration Method)

  • 이경직;이대희;김창현;이창섭;이석기;이병교
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1107-1112
    • /
    • 1997
  • Mn-Zn ferrite powders prepared by an alcoholic dehydration method. Vacuum casting, a kind of wet forming process was examined with this powders. As binders, polyethylene glycol and polyvinyl alcohol were used. In order to estimate this conditions, fracture morphology, densities of green and sintered bodies and the microstructure were observed. High density and homogeneous microstructure in sintered bodies were obtained in the case of 0.1 wt% PEG or 0.5 wt% PVA.

  • PDF

가압-진공 하이브리드 주입 성형에 의한 알루미나의 성형에 미치는 다단 가압의 영향 (Effect of Step Pressure on Shape Forming of Alumina by Pressure-Vacuum Hybrid Slip Casting)

  • 조경식;이현권;우병준
    • 한국세라믹학회지
    • /
    • 제50권2호
    • /
    • pp.142-148
    • /
    • 2013
  • Conventional cold isostatic pressing, slip casting, and filter pressing are not completely suitable for fabricating large plates because of disadvantages such as the high cost of equipment and formation of density gradient. These problems could be avoided by employing pressure-vacuum hybrid slip casting (PVHSC). In the PVHSC, the consolidation occurs not only by the compression of the slip in casting room, but also by vacuum sucking of the dispersion medium around the mold. We prepared the alumina bodies by the PVHSC in a static- or stepwise-pressure manner for loading up to 0.5 MPa using an aqueous slip. The green bodies were dried at $30^{\circ}C$ with 40 ~ 80% relative humidity. Under static pressure, casting induced a density gradient in the formed body, resulting in cracking and distortion after the firing. However, the stepwise pressure loading resulted in green bodies with homogeneous density, and the minimization of the appearance of those defects in final products. Desirable drying results were obtained from the cast bodies dried with 80% RH environment humidity. When sintered at $1650^{\circ}C$ for 4 h, the alumina plate made by stepwise-pressure casting reached full density (> 99.7% relative density).

선택적 레이저 소결법을 이용한 기어박스의 정밀주조기술개발 (Development of Precision Casting Technology for Inlet Gear Box using Selective Laser Sintering)

  • 김천기
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.30-37
    • /
    • 2000
  • In this paper rapid prototyping and precision casting technology have been developed for the manufacturing of inlet gear box of an airplane, Rapid prototyping is a new prototyping technology that produces complicated parts directly from three-dimensional CAD data with a high efficiency and has been extensively applied to various manufacturing processes. In the present work Selective Lase Sintering(SLS) system is utilized in order to manufacture prototype of the inlet gear box. Prototyping technology using SLS is also investigated from the viewpoint of accuracy. Using the SLS master the casting products are manufactured through several processes such as : vacuum casting lost wax shell casting and investment cast-ing. The shrinkage characteristics of wax and cast iron in the casting procedures are considered and then reflected to the design procedure so that the accuracy of the product is improved consequently.

  • PDF

진공 다이캐스팅 공법의 사출조건에 따른 연료전지용 분리판 성형 해석 및 제조 공정 (Fabrication Process and Forming Analysis of Fuel Cell Bipolar Plate by Injection Condition of Vacuum Die Casting)

  • 진철규;장창현;김재성;최재원;강충길
    • 한국주조공학회지
    • /
    • 제31권5호
    • /
    • pp.274-283
    • /
    • 2011
  • The vacuum die casting is a promising candidate of the stamping process for fabrication of fuel cell bipolar plate due to its advantages, such as precision casting, mass production and short production time. This study proposes vacuum die casting process to fabricate bipolar plates in fuel cell. Bipolar plates were fabricated under various injection conditions such as molten metal temperature and injection velocity. Also, according to injection velocity conditions, simulation results of MAGMA soft were compared to the experimental results. In case of melt temperature $650^{\circ}C$, misrun occurred. When the melt temperature was $730^{\circ}C$, mechanical properties were low due to dendrite microstructure. Injection velocity has to set at more than 2.0 m/s to fabricate the sound sample. When melt temperature, injection velocity (Fast shot), and vacuum pressure are $700^{\circ}C$, 2.5 m/s and 30 kPa respectively, sample had good formability and few casting defects. Simulation results are mostly in agreement with experimental results.

금형 충전 해석을 이용한 연료전지 분리판 진공 다이캐스팅 금형 설계 방안 및 실험 검증 (Vacuum Die Casting Mold Design of Fuel Cell Bipolar Plate using Die Filling Simulation and Experimental Verification)

  • 진철규;장창현;강충길
    • 한국주조공학회지
    • /
    • 제32권2호
    • /
    • pp.65-74
    • /
    • 2012
  • In this paper, we present the results of our studies on optimal die design towards development of a vacuum die casting process to fabricate fuel cell bipolar plate with micro-channel array. Cavity and overflow shape is designed by computational filling analysis of MAGMA soft. Optimal die design consists of seven overflows at the end of cavity and three overflows at each side wall of cavity. The molten metal that passed the gate and reached the side wall flowed into the side overflow, no turbulent flow occurred, and the filling behavior and velocity distribution were uniform. In addition, partially solidified molten metal passing through the channel was perfectly eliminated by overflow without back-flow. When vacuum pressure, injection speed of low and high region was 300 mbar, 0.3 m/s and 2.5 m/s respectively with Silafont 36 die casting alloy, sound sample without casting defects was obtained. The experimental results are nearly consistent with simulation results.

진공다이캐스팅 공법을 이용한 자동차용 조향장치 개발에 대한 사례연구 (Case Study for Developing Automobile Part (Steering Wheel) using Vacuum Die-Casting Mold)

  • 권홍규;장무경
    • 산업경영시스템학회지
    • /
    • 제35권2호
    • /
    • pp.196-203
    • /
    • 2012
  • When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation between injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects were differentiated according to the various relations of the above conditions. High-qualified products can be manufactured as those defects are controled by the proper modifications or the changes of die casting mold with the conditions. In this research, the proper manufacturing method was derived intensively for reducing the defect of the internal porosity of steering wheel housing which is very complicated to achieve a good mold design. The method was also derived for minimizing and for guaranteeing the product quality through the analysis of the casting problem and the deduction of alternative plans.

슬러리 캐스팅과 흡인주조기술을 이용한 알루미늄 금형의 쾌속제작 (Rapid Tooling of Aluminum Mold Using Slurry Casting and Vacuum Sealed Casting)

  • 정해도;배원병
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.277-282
    • /
    • 2000
  • The RP&M (Rapid prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, in which the production cycle is getting shorter owing to various needs from consumers. In this paper, RP&M is applied to a casting process. A casting process has a merit of being able to reflect complicated shapes at one time. But it has not been applied to the precision industry because of bad quality on surface. So we will improve characteristics of aluminum casting process using vacuum sealed casting process and porous ceramic mold which is made by slurry casting process.

  • PDF

수치해석에 의한 진공다이캐스팅에서의 용탕 유동특성 연구 (A study on Characteristics of Molten Metal Flow in Vacuum DieCasting by Numerical Analysis)

  • 박진영;임관우;이광학;김성빈;김억수;박익민
    • 한국주조공학회지
    • /
    • 제27권4호
    • /
    • pp.153-158
    • /
    • 2007
  • Molten metal flow in vacuum die casting was characterized by a numerical analysis. The VOF method was used to simulate the filling behaviors of molten metal during filling process. The various vacuum degrees of no vacuum(760 mmHg), 650, 500, 250 and 60mmHg were artificially applied in cavity. And the filling behaviors of molten metal with the applied vacuum conditions were simulated and compared with those of experiment. The results showed that molten metal was partially filled into cavity when vacuum was applied and the filling length of molten metal in cavity was increased with increasing applied reduced pressure in cavity. Also, the simulated filling behaviors of molten metal were apparently similar to those of experiment, indicating the numerical analysis developed in this study was highly effective. Through the result of fluid flow simulation, both relation equations of filling length and filling velocity with the variation of pressure conditions in cavity were calculated respectively and the internal gas contents of casting was significantly reduced by the modification of vacuum gate system.

알루미늄 합금의 중력금형주조 시 진공감압을 이용한 충전성 개선 (Improvement of Mold Filling in Aluminum Gravity Die Casting by Vacuum Suction)

  • 김정국;김기영
    • 한국주조공학회지
    • /
    • 제29권3호
    • /
    • pp.138-143
    • /
    • 2009
  • Vacuum suction is applied to the mold during pouring in the inclined gravity die casting to remove defects such as misrun and gas porosity in the brake master cylinder. Casting defects are observed after solidification and their cause is analyzed by using the calculated results with commercial solidification and flow analysis code(ZCAST). The optimum vacuum suction is -2 cmHg, and when the start time of vacuum suction is 3 seconds after pouring, better filled result is obtained by holding it for 15 seconds. Reproducibility test under the optimum conditions attained from the above pouring tests is performed, and it is confirmed that these pouring conditions can be applied to the mass production immediately.