• 제목/요약/키워드: Vacuum Hot Pressing

검색결과 78건 처리시간 0.023초

Thermoelectric properties of FeVSb1-xTex half-heusler alloys fabricated via mechanical alloying process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Journal of Ceramic Processing Research
    • /
    • 제20권6호
    • /
    • pp.582-588
    • /
    • 2019
  • FeVSb1-xTex (0.02 ≤ x ≤ 0.10) half-Heusler alloys were fabricated by mechanical alloying process and subsequent vacuum hot pressing. Near single half-Heusler phases are formed in vacuum hot pressed samples but a second phase of FeSb2 couldn't be avoided. After doping, the lattice thermal conductivity in the system was shown to decrease with increasing Te concentration and with increasing temperature. The lowest thermal conductivity was achieved for FeVSb0.94Te0.06 sample at about 657 K. This considerable reduction of thermal conductivities is attributed to the increased phonon scattering enhanced by defect structure, which is formed by doping of Te at Sb site. The phonon scattering might also increase at grain boundaries due to the formation of fine grain structure. The Seebeck coefficient increased considerably as well, consequently optimizing the thermoelectric figure of merit to a peak value of ~0.24 for FeVSb0.94Te0.06. Thermoelectric properties of various Te concentrations were investigated in the temperature range of around 300~973 K.

$2XXX Al-SiC_w$ 복합재료의 분말야금 제조와 기계적 성질 향상 연구 (Improvement of Mechanical Properties of P/M Processed $2XXX Al-SiC_w$ Composites)

  • 신기삼
    • 한국분말재료학회지
    • /
    • 제2권3호
    • /
    • pp.238-246
    • /
    • 1995
  • The purpose of this study is to establish powder metallurgy (P/M) fabrication processes for high performance 2XXX Al composites reinforced with SiC whiskers. Rapidly solidified 2XXX Al powders produced by commercial atomization technique were mixed with SiC whiskers. The results of mixing processes indicated that fluidized zone mixing technique was considerably effective for the large scale production of the mixture of Al powders and whiskers. In order to consolidate these $Al-SiC_w$ mixtures into $Al-SiC_w$ composite billets, a vacuum hot press was set up, and hot processing variables were investigated. Using the hot pressing temperature of $620^{\circ}C$ under the pressure of 50 MPa, good quality $Al-SiC_w$ composite billets having relatively homogeneous microstructure and sound Al/sic interfacial bonding were obtained. Composite billets were then extruded to bars having relatively homogeneous microstructures at the extrusion temperature of 450~500$^{\circ}C$ under the extrusion pressure of 700~ 1000 MPa. Mechanical properties of the extruded bars were found to be comparable with those of the composite processed by Advanced Composite Materials Corp. To improve mechanical properties of the composites, elimination of coarse intermetallic compounds, uniform distribution of reinforcements, and minimization of whisker breakage are suggested.

  • PDF

기계적 합금화 p-type FeSi2의 플라즈마 용사 성형 및 열전 특성 (Thermoelectric Properties of p- type FeSi2 Processed by Mechanical Alloying and Plasma Thermal Spraying)

  • 최문관;어순철;김일호
    • 한국재료학회지
    • /
    • 제14권3호
    • /
    • pp.218-223
    • /
    • 2004
  • P-type $\beta$-FeSi$_2$ with a nominal composition of $Fe_{0.92}Mn_{0.08}Si_2$ powders has been produced by mechanical alloying process. As-milled powders were spray dried and consolidated by atmospheric plasma thermal spraying as a rapid sintering process. As-milled powders were of metastable state and fully transformed to $\beta$-$FeSi_2$ phase by subsequent isothermal annealing. However, as-thermal sprayed $Fe_{0.92}Mn_{0.08}Si_2$ consisted of untransformed mixture of $\alpha$-$Fe_2Si_{5}$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce transformation to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase. Isothermal annealing at $845^{\circ}C$ in vacuum gradually led to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties of $\beta$-$FeSi_2$ materials before and after isothermal annealing were evaluated. Seebeck coefficient increased and electric conductivity decreased with increasing annealing time due to the phase transition from metallic phases to semiconducting phases. Thermoelectric properties showed gradual increment, but overall properties appeared to be inferior to those of vacuum hot pressed specimens.

기계적 합금화법으로 제조된 Al-(6~3wt.%)Cr-(3~6wt.%)Zr 합금의 열적 안정성 (Thermal Stability of Mechanically Alloyed Al-(6~3wt.%)Cr-(3~6wt/%)Zr Alloys)

  • 양상선;이광민
    • 한국재료학회지
    • /
    • 제10권6호
    • /
    • pp.403-408
    • /
    • 2000
  • 본 연구에서는 고온용 고강도 Al 합금을 제조하기 위해 Al-Cr-Zr 복합금속분말을 attritor에서 300rpm의 회전속도로 20시간 동안 기계적 합금화방법으로 제조한 후 진공 고온 압축성형하였다. Al-Cr-Zr 합금의 미세구조 및 조직관찰은 XRD, TEM 등을 사용하여 분석하였고, 열적 안정성은 열적 노출시간에 따른 미소경도측정을 통하여 조사하였다. 진공 열간 압축성형 되었을 때 MA Al-Cr-Zr 합금의 이론 밀도의 97%에 이르는 조밀화르 f보였으며, $300^{\circ}C$에서 100시간 열처리 한 경우에는 경도변화가 거의 없었고, $500^{\circ}C$에서 100시간 열처리한 경우에도 감소가 6% 이내로 우수한 열적 안정성을 나타내었다. 이와 같은 MA Al-Cr-Zr 합금의 우수한 열적 안정성은 기계적 합금화에 의해 Al 기지 내에 미세하고 균일하게 분산된 Cr과 Zr이 고온 성형과 열처리 과정에 의해 $Al_3Zr,\;Al_{13}Cr_2$의 금속간 화합물들의 형성되었으며, 열처리 후의 이 합금의 최종 결정립 크기는 150mm 크기 이하이었다.

  • PDF

기계적 합금화에 의한 Iron-Silicide의 제조 및 특성 (Processing and Properties of Mechanically Alloyed Iron-Silicide)

  • 어순철;김일호
    • 한국재료학회지
    • /
    • 제11권2호
    • /
    • pp.132-136
    • /
    • 2001
  • 기계적 합금화 공정을 이용하여 열전재료$FeSi_2$분말을 제조하여 열간압축법을 사용하여 성형하였다. 열간압축 성형된 $FeSi_2$는 열전특성을 나타내는 $\beta$-$FeSi_2$ 상 및 상변태가 완료되지 않은 $\alpha$-$Fe_2$$Si_{5}$$\varepsilon$-FeSi의 혼합상으로 이루어져 있음이 확인되었다. 열전재료로의 $\beta$-$FeSi_2$ 상변태 유도를 위해 항온열처리를 행하여 상변태 조건을 조사하였다. SEM, TEM, XRD, DTA 등을 이용하여 상변태 거동을 분석한 결과, $830^{\circ}C$에서 24시간 진공 항온열처리 후 단상의 $\beta$-FeSi$_2$ 상을 얻을 수 있었다. 항온열처리 전의 열간압축 성형체와 상변태가 완료된 $\beta$-FeSi$_2$의 기계적 성질과 열전 특성을 측정하여 비교 분석하였다.

  • PDF

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

열처리 시간에 따른 중적외선 투과 ZnS 세라믹의 합성과 특성 (Synthesis and Characterization of Middle Infrared Transmission ZnS Ceramics by Heat Treatment Time)

  • 권태형;여서영;박창순;김창일;홍연우;백종후
    • 센서학회지
    • /
    • 제26권5호
    • /
    • pp.360-365
    • /
    • 2017
  • In this study, a heat treatment process was applied to ZnS nano-powder to improve the optical properties of ZnS ceramic, and the characteristics of heat treatment time were studied. The ZnS nano-powders were synthesized by hydrothermal synthesis. The heat treatment was carried out at $550^{\circ}C$ for 0.5, 1, 2, and 4 hours in a vacuum atmosphere ($10^{-2}torr$). X-ray diffraction and scanning electron microscope analyzes confirmed the change of crystal phase and grain size to confirm the structural change with heat treatment time. The heat treated ZnS nano-powder was sintered by hot pressing, and the change of optical properties of the ZnS ceramic was analyzed by infrared spectroscopy.

High-Temperature Deformation Behavior of Ti3Al Prepared by Mechanical Alloying and Hot Pressing

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.57-60
    • /
    • 2020
  • Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 ㎛. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.

티타늄금속기 복합재료의 강화공정에 관한 미시역학적 모델링 (Micro-mechanical Modeling of the Consolidation Processes in Titanium Metal Matrix Composites)

  • 김준완;김태원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.207-210
    • /
    • 2002
  • Metal matrix composites(MMCs) are increasingly attractive for high technology components such as aerospace applications and transportations due to their high strength, stiffness, and toughness. Many processes for fabricating MMCs have been developed, and relatively simple Foil-Fiber-Foil method is usually employed in solid state consolidation processes. During the consolidation processes at high temperature, densification occurs by the inelastic flow of the matrix materials, and the process is coupled with the conditions of pressure, temperature and volume fraction of fiber and matrix materials. This is particularly important in titanium matrix composites, and thus a generic model based on micro-mechanical approaches enabling the evolution of density over time to be predicted has been developed. The mode developed is then implemented into FEM so that practical process simulation has been carried out. Further the experimental investigation of the consolidation behavior of SiC/Ti-6Al-4V composites using vacuum hot pressing has been performed, and the results obtained are compared with the model predictions.

  • PDF

이규화몰리.텅스텐 복합재료의 합성에 관한 연구 (A Study on Synthesis of (Mo.W)$\textrm{Si}_2$ Composites)

  • 장대규
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.92-98
    • /
    • 1999
  • (Mo.W)Si$_2$ composites were fabricated by vacuum hot-pressing elemental Mo, W and Si powders at various temperatures. Elemental Mo, W and Si powders were alloyed in the proper proportions to form solid solutions. The microstructure and properties of these materials was characterized by using x-ray diffraction, optical microscopy, energy dispersive x-ray spectroscopy and Vicker's technique. It was found that tungsten was mainly substituted for Mo atoms, and made a completed solid solution of (Mo.W)Si$_2$ over 1$600^{\circ}C$. The lattice parameters and Vickers hardness increased largely with increasing reaction temperature by the most soluble elements, due to the solid-solution hardening.

  • PDF