• Title/Summary/Keyword: Vacuum Extraction

Search Result 160, Processing Time 0.042 seconds

Volatile Flavor Compounds in Pen Shell By-product Hydrolysate (키조개 부산물 단백질 가수분해물의 휘발성 향기성분에 관한 연구)

  • Cha, Yong-Jun;Kim, Eun-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.964-971
    • /
    • 1995
  • Volatile flavor compounds and free amino acids in untreated and hydrolysate pen shell by-product produced with APL 440 protease were compared by vacuum simultaneous steam distillation-solvent extraction/gas chromatography/mass spectrometry. A total of 109 volatile flavor compounds were detected in hydrolysate (65 compounds) or the 109 volatile flavor compounds were detected in untreated pen shell by-product (88). These compounds were composed of aldehydes(16), ketones(17), alcohols(31), nitrogen containing compounds (16), aromatic hydrocarbon compounds(8), esters(3), and miscellaneous compounds (17). Levels of aldehydes and aromatic hydrocarbons decreased after hydrolysis, whereas levels of nitrogen containing compounds increased 3 times than in untreated pen shell by-product. Taurine, known to be having a physiological function, was accounted for 31.25% of total amino acids in hydrolysate.

  • PDF

Matrix solid phase dispersion(MSPD) extraction and HPLC determination of enrofloxacin and ciprofloxacin in pork muscle tissue (시료고체상분산(matrix solid phase dispersion)전처리법과 액체크로마토그라피를 이용한 돈육중 enrofloxacin 및 ciprofloxacin 분석)

  • Kang, Hwan-goo;Son, Seong-wan;Lee, Hye-sook;Kim, Jae-hak;Cho, Myung-haing
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.1
    • /
    • pp.195-202
    • /
    • 1997
  • A method for the isolation by matrix solid phase dispersion method and liquid chromatographic determination of enrofloxacin and ciprofloxacin in pork muscle tissue is presented. Blank or enrofloxacin and ciprofloxacin spiked samples(0.5g) containing 0.05g oxalic acid were blended with $C_{18}$(octadecylsilyl derivatized silica) packing material. After homogenization, $C_{18}$/muscle tissue matrix was transferred to glass column made from 10ml glass syringe and filter paper, and compressed to 4~4.5ml volume. A column was washed with 8ml of hexane and dried under vacuum. Interfering materials were removed by ethylacetate 8ml and dried, following which enrofloxacin and ciprofloxacin were eluted with 8ml of methanal under gravity. The eluate containing enrofloxacin and ciprofloxacin wase free from interfering compound when analysed by HPLC with UV detection at 278nm. Enrofloxacin and ciprofloxacin showed linear response with UV detector at the range of $0.05{\sim}1.0{\mu}g/ml$ and eluted within 5ml elution volume of methanol from the matrix. Fortified sample containing 0.05g oxalic acid represented more good recoveries than that of control sample. Average percentages of enrofloxacin and ciprofloxacin were $93.30{\pm}4.56%$ and $91.84{\pm}4.17%$, respectively, for the concentration range(0.05, 0.1, 0.25, 0.5 and $0.75{\mu}g/g$). The interassay variability of enrofloxacin was $6.02{\pm}5.33%$ with an intra-assay variability of 4.89% and $6.75{\pm}2.68%$ with 4.54% for ciprofloxacin. Detection limit of enrofloxacin and ciprofloxacin was $0.030{\mu}g/g$ in the spiked sample.

  • PDF

Thermo-decomposition behavior of GaAs scrap by thermogravimetry (열중량분석법에 의하 GaAs Scrap의 열분해거동)

  • 이영기;손용운;남철우;최여윤;홍성웅
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.10-18
    • /
    • 1995
  • Recycling of GaAs scrap which occurs durmg the manufachre of GaAs waters is. therefore, required to solve the environmentalproblcrns caused by arsenic metal and to reutilize gallium which is a expensive metal. A thema-analyticalstudy (thermogravimeg. and derivative thermogravimetry) tor the evaporation behavior of Fa, As from Gak\ulcorner scrap powdersat vacuum atmosphere(2-2.5X 10'mmHg); was primarily performed to identi j the possibility of Ga extraction. Until79YC, the weight change of G d s porvder does not take place, at 800-970C range GaAs vaporizes as the GaAs compound,and over 1WO"C it decamposes mto Ga and As md then As vaporizes rapidly as a result of the difference af vaporprcssure for Ga and As, liquid Ga rcmains eventually.mains eventually.

  • PDF

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF

An Empirical Study on the Improvement of In Situ Soil Remediation Using Plasma Blasting, Pneumatic Fracturing and Vacuum Suction (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화 개선 효과에 대한 실증연구)

  • Jae-Yong Song;Geun-Chun Lee;Cha-Won Kang;Eun-Sup Kim;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.85-103
    • /
    • 2023
  • The in-situ remediation of a solidified stratum containing a large amount of fine-texture material like clay or organic matter in contaminated soil faces limitations such as increased remediation cost resulting from decreased purification efficiency. Even if the soil conditions are good, remediation generally requires a long time to complete because of non-uniform soil properties and low permeability. This study assessed the remediation effect and evaluated the field applicability of a methodology that combines pneumatic fracturing, vacuum extraction, and plasma blasting (the PPV method) to improve the limitations facing existing underground remediation methods. For comparison, underground remediation was performed over 80 days using the experimental PPV method and chemical oxidation (the control method). The control group showed no decrease in the degree of contamination due to the poor delivery of the soil remediation agent, whereas the PPV method clearly reduced the degree of contamination during the remediation period. Remediation effect, as assessed by the reduction of the highest TPH (Total Petroleum Hydrocarbons) concentration by distance from the injection well, was uncleared in the control group, whereas the PPV method showed a remediation effect of 62.6% within a 1 m radius of the injection well radius, 90.1% within 1.1~2.0 m, and 92.1% within 2.1~3.0 m. When evaluating the remediation efficiency by considering the average rate of TPH concentration reduction by distance from the injection well, the control group was not clear; in contrast, the PPV method showed 53.6% remediation effect within 1 m of the injection well, 82.4% within 1.1~2.0 m, and 68.7% within 2.1~3.0 m. Both ways of considering purification efficiency (based on changes in TPH maximum and average contamination concentration) found the PPV method to increase the remediation effect by 149.0~184.8% compared with the control group; its average increase in remediation effect was ~167%. The time taken to reduce contamination by 80% of the initial concentration was evaluated by deriving a correlation equation through analysis of the TPH concentration: the PPV method could reduce the purification time by 184.4% compared with chemical oxidation. However, the present evaluation of a single site cannot be equally applied to all strata, so additional research is necessary to explore more clearly the proposed method's effect.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

PREDICTION OF PHYSICO-CHEMICAL AND TEXTURE CHARACTERISTICS OF BEEF BY NEAR INFRARED TRANSMITTANCE SPECTROSCOPY

  • Olivan, Mamen;Delaroza, Begona;Mocha, Mercedes;Martinez, Maria Jesus
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1256-1256
    • /
    • 2001
  • The physico-chemical and texture characteristics of meat determine the nutritional, technological and sensory quality. However, the analysis of meat quality requires expensive, laborious and time consuming analytical methods. The objective of this study was to evaluate NIR spectroscopy using transmittance for determining the moisture, fat, protein and total pigment content, the water holding capacity (WHC) and the toughness of beef meat. A total of 318 spectra were recorded from ground beef samples by a Feed Analyzer 1265 of Infratec. The samples were obtained from the Longissimus muscle of the 10$^{th}$ rib of yearling bulls, ground with an electrical chopper, vacuum packaged, aged during 7 days and frozen at -24$^{\circ}C$ until the analyses were done. Moisture content was measured by oven drying at 10$0^{\circ}C$, fat content was determined by Soxhlet extraction and protein content was estimated from nitrogen content using the Kjeldahl analysis. The total pigment content was determined by the method of Hornsey and the WHC using the method of filter paper press. The instrumental evaluation of texture (maximum load WB, maximum stress MS and toughness) was conducted in an Instron equipment with a Warner-Bratzler shearing device. This analysis was performed on a chop of 3.5 cm obtained from the longissimus of the 8$^{th}$ rib, aged during 7 days, kept frozen at -24$^{\circ}C$ and cooked before the analysis. Near infrared spectra were recorded as log 1/T (T=transmittance) at 2 nm intervals from 850 to 1050 nm using a Feed Analyzer 1265 of Infratec. Calibrations were performed with the WinISI software (vs. 1.02) using the MPLS method. To examine the effect of scatter correction o. derivation of spectra on the calibration performance, calibrations were calculated with the crude spectra or pretreated with different mathematical treatments (inverse MSC, SNVD) and/or second derivative operation. For chemical composition, the use of the scatter corrections improved the calibration statistics, in terms of lower SECV and higher $r^2$. In most of the variables, the use of the 2$^{nd}$ derivative improved the predictions, mainly when combined with the SNVD treatment. However, for predicting the texture traits, the best estimation was obtained from the crude spectrum. These results showed that the equations obtained for predicting moisture, fat and total pigments were very accurate, with $r^2$ being higher that 0.9. However, the prediction of the texture traits (WB, MS, toughness) from ground meat was poor.

  • PDF

Flavor Compounds in Commercial Toha-jeot (시판 토하젓의 향기성분)

  • Lee, Jung-Suck;Joo, Dong-Sik;Kim, Hun;Jang, Sung-Min;Choi, Heung-Gil;Cho, Soon-Yeong;Cha, Yong-Jun;Lee, Eung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.222-228
    • /
    • 1997
  • Toha-jeot, a traditional salt-fermented seafood in Korea, was purchased on the market in order to analyze the flavor compounds. Volatile flavor compounds in unfermented and fermented Toha-jeot were compared by vacuum simultaneous steam distillation-solvent extraction/gas chromatography/mass spectrometry. A total of 104 volatile flavor compounds were detected in both samples. Of these, 66 were positively identified, composed of aldehydes(14), ketones(8), alcohols(30), terpenes(20), sulfur-containing compounds(10), aromatic compounds (6), esters(12) and miscellaneous compounds(8). Levels of several other compounds such as aldehydes, terpenes, sulfur-containing compounds and esters decreased with fermentation time, whereas alcohols, ketone and aromatic compounds increased. Particularly, levels of alcohols in fermented Toha-jeot was 21 times higher than those of unfermented one. Major volatile flavor compounds in both samples were composed of terpenes, sulfur-containing compounds, esters and ethanol.

  • PDF

Development of Functional Seasoning Agents from Skipjack Processing By-product with Commercial Proteases 2. Flavor Compounds in Powdered Skipjack Hydrolysate (참치 가공부산물로부터 단백질 분해효소를 이용한 기능성 천연조미료 제재의 개발 2. 분말 참치 가수분해물의 향미성분)

  • 김은정;차용준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.4
    • /
    • pp.617-626
    • /
    • 1996
  • Nitrogenous compounds in hydrolysate of skipjack processing by-product(SPB) was increased 6.4 times in amount comparing that of raw SPB. The major compounds in hydrolysate were anserine, histidine, leucine, hydroxyproline, arginine, phenylalanine and taurine, and composed 56.25% of total nitrogenous compounds. In fatty acid composition, the highest amount was saturated fatty acids in both samples. Polyunsaturated fatty acids such as $C_{20:5}$ and $C_{22:6}$ were increased after hydrolysis. A total of 99 volatile compounds was detected in raw and hydrolysate of SPB by vacuum simultaneous steam distillation-solvent extraction/gas chromatography/mass chromatorgraphy. Of these, 75 compounds were identified in raw SPB, while 72 compounds were identified in hydorlysate of SPB. There compounds were composed mainly of 28 aldehydes, 20 ketones, 19 alcohols, 5 nitrogen containing compounds, 5 aromatic hydrocarbons, 4 furans and 12 miscellaneous compounds. Levels of aldehydes and aromatic hydrocarbons decreased after hydrolysis, whereas heterocyclic compounds such as pyrazies, furans increased.

  • PDF

Full validation of high-throughput bioanalytical method for the new drug in plasma by LC-MS/MS and its applicability to toxicokinetic analysis

  • Han, Sang-Beom
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.65-74
    • /
    • 2006
  • Modem drug discovery requires rapid pharmacokinetic evaluation of chemically diverse compounds for early candidate selection. This demands the development of analytical methods that offer high-throughput of samples. Naturally, liquid chromatography / tandem mass spectrometry (LC-MS/MS) is choice of the analytical method because of its superior sensitivity and selectivity. As a result of the short analysis time(typically 3-5min) by LC-MS/MS, sample preparation has become the rate- determining step in the whole analytical cycle. Consequently tremendous efforts are being made to speed up and automate this step. In a typical automated 96-well SPE(solid-phase extraction) procedure, plasma samples are transferred to the 96-well SPE plate, internal standard and aqueous buffer solutions are added and then vacuum is applied using the robotic liquid handling system. It takes only 20-90 min to process 96 samples by automated SPE and the analyst is physically occupied for only approximately 10 min. Recently, the ultra-high flow rate liquid chromatography (turbulent-flow chromatography)has sparked a huge interest for rapid and direct quantitation of drugs in plasma. There is no sample preparation except for sample aliquotting, internal standard addition and centrifugation. This type of analysis is achieved by using a small diameter column with a large particle size(30-5O ${\mu}$m) and a high flow rate, typically between 3-5 ml/min. Silica-based monolithic HPLC columns contain a novel chromatographic support in which the traditional particulate packing has been replaced with a single, continuous network (monolith) of pcrous silica. The main advantage of such a network is decreased backpressure due to macropores (2 ${\mu}$m) throughout the network. This allows high flow rates, and hence fast analyses that are unattainable with traditional particulate columns. The reduction of particle diameter in HPLC results in increased column efficiency. use of small particles (<2 urn), however, requires p.essu.es beyond the traditional 6,000 psi of conventional pumping devices. Instrumental development in recent years has resulted in pumping devices capable of handling the requirements of columns packed with small particles. The staggered parallel HPLC system consists of four fully independent binary HPLC pumps, a modified auto sampler, and a series of switching and selector valves all controlled by a single computer program. The system improves sample throughput without sacrificing chromatographic separation or data quality. Sample throughput can be increased nearly four-fold without requiring significant changes in current analytical procedures. The process of Bioanalytical Method Validation is required by the FDA to assess and verify the performance of a chronlatographic method prior to its application in sample analysis. The validation should address the selectivity, linearity, accuracy, precision and stability of the method. This presentation will provide all overview of the work required to accomplish a full validation and show how a chromatographic method is suitable for toxirokinetic sample analysis. A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method developed to quantitate drug levels in dog plasma will be used as an example of tile process.

  • PDF