• Title/Summary/Keyword: Vacuum Baking

Search Result 41, Processing Time 0.028 seconds

The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak (KSTAR 토카막 진공용기 및 플라즈마 대향 부품의 탈기체 처리를 위한 가열 해석)

  • Lee, K.H.;Im, K.H.;Cho, S.;Kim, J.B.;Woo, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.247-254
    • /
    • 2000
  • The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, $10^{-6}{\sim}10^{-7}Pa$, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least $250^{\circ}C,\;350^{\circ}C$ respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  • PDF

Baking analysis of the KSTAR vacuum vessel and plasma facing components (KSTAR 진공용기 및 플라즈마 대향 부품에 대한 베이킹 해석)

  • 이강희;임기학;허남일;인상렬;조승연
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.397-402
    • /
    • 1999
  • The base pressure of the vacuum vessel of KSTAR tokamak is to be ultra high vacuum, $10^{-6}\sim10^{-7}Pa$, to produce a clean plasma with low impurity concentrations. For this purpose, vessel and plasma facing components need to be baked up to $250^{\circ}C$, $350^{\circ}C$ respectively to remove impurities from the plasma-material interaction surfaces. Here the required heating power to be supplied for baking has been calculated according to pre-assumed different temperature profiles (baking scenario and proper baking plan for KSTAR tokamak has been proposed. Mass flow rate and temperature of nitrogen gas for baking has also been calculated.

  • PDF

A study on the RE/DC discharge cleaning for high vacuum SUS chamber (RF/DC 방전을 이용한 고 진공용SUS 용기세정에 관한 연구)

  • 김정형;임종연;서인용;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.298-302
    • /
    • 2001
  • Cleaning effect of RF/DC discharge to clean the surface of vacuum chamber was studied for various discharge conditions. Glow discharge cleaning without baking reduced the outgassing rate to 1/2, which was similar to that after the only baking treatment alone. Glow discharge cleaning treatment with baking improved the cleaning efficiency and then the outgassing rate was remarkably reduced to 1/20. It was found that the ion energy and the ion density were important factors in cleaning the surface. RF discharge cleaning was more effective than BC discharge cleaning.

  • PDF

A Study on Temperature Characteristics of KSTAR PFC and Vacuum Vessel at Baking Phase (KSTAR PFC와 진공용기의 가열탈리 단계에서의 온도특성에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Young-Jin;Jung, Nam-Yong;Kim, Kyung-Min;Lee, Je-Myo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.158-168
    • /
    • 2015
  • To create an ultra-high vacuum state at the KSTAR, the temperature of plasma facing component and vacuum vessel should be maintained at $300^{\circ}C$ and $110^{\circ}C$ respectively at a baking phase. The purpose of this research is obtaining the target baking temperatures. Experiments were performed to investigate the temperature characteristics of PFC and VV at the baking phase. Thermal network analysis was used to find heat transfer rates among PFC, VV and other components, and this analysis was verified by using the experimental data. The required heating energy of the PFC and the heating and cooling energy of the VV for the target baking temperatures were found to be 346 kW, 28 kW, and 136 kW, respectively.

Study of Failure Mechanisms of Wafer Level Vacuum Packaging for MEMG Gyroscope Sensor (웨이퍼 레벨 진공 패키징된 MEMS 자이로스코프 센서의 파괴 인자에 관한 연구)

  • 좌성훈;김운배;최민석;김종석;송기무
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.57-65
    • /
    • 2003
  • In this study, we carry out reliability tests and investigate the failure mechanisms of the anodically bonded wafer level vacuum packaging (WLVP) MEMS gyroscope sensor. There are three failure mechanisms of WLVP: leakage, permeation and out-gassing. The leakage is caused by small dimension of the leak channel through the bonding interface and internal defects. The larger bonding width and the use of single crystalline silicon can reduce the leak rate. Silicon and glass wafer itself generates a large amount of outgassing including $H_2O$, $C_3H_5$, $CO_2$, and organic gases. Epi-poly wafer generates 10 times larger amount of outgassing than SOI wafer. The sandblasting process in the glass increases outgassing substantially. Outgassing can be minimized by pre-baking of the wafer in the vacuum oven before bonding process. An optimum pre-baking temperature of the wafers would be between $400^{\circ}C$ and $500^{\circ}C$.

  • PDF

Ultrahigh Vacuum Technologies Developed for a Large Aluminum Accelerator Vacuum System

  • Hsiung, G.Y.;Chang, C.C.;Yang, Y.C.;Chang, C.H.;Hsueh, H.P.;Hsu, S.N.;Chen, J.R.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.309-316
    • /
    • 2014
  • A large particle accelerator requires an ultrahigh vacuum (UHV) system of average pressure under $1{\times}10^{-7}$ Pa for mitigating the impact of beam scattering from the residual gas molecules. The surface inside the beam ducts should be controlled with an extremely low thermal outgassing rate under $1{\times}10^{-9}Pa{\cdot}m^3/(s{\cdot}m^2)$ for the sake of the insufficient pumping speed. To fulfil the requirements, the aluminum alloys were adopted as the materials of the beam ducts for large accelerator that thanks to the good features of higher thermal conductivity, non-radioactivity, non-magnetism, precise machining capability, et al. To put the aluminum into the large accelerator vacuum systems, several key technologies have been developed will be introduced. The concepts contain the precise computer numerical control (CNC) machining process for the large aluminum ducts and parts in pure alcohol and in an oil-free environment, surface cleaning with ozonized water, stringent welding process control manually or automatically to form a large sector of aluminum ducts, ex-situ baking process to reach UHV and sealed for transportation and installation, UHV pumping with the sputtering ion pumps and the non-evaporable getters (NEG), et al. The developed UHV technologies have been applied to the 3 GeV Taiwan Photon Source (TPS) and revealed good results as the expectation. The problems of leakage encountered during the assembling were most associated with the vacuum baking which result in the consequent trouble shootings and more times of baking. Then the installation of the well-sealed UHV systems is recommended.

Residual gas analysis of small cavity for emissive flat panel display (미소체적을 갖는 평판표시소자용 패널내부의 잔류가스 분석)

  • 조영래;오재열;최정옥;김봉철;이병교;이진호;조경익
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • The total pressure and partial pressure of small cavity for flat panel display have been successfully measured by using an ultra-high vacuum chamber with mass spectrometer. The total pressure in the panel was in the range of $10^{-6}$ Torr and the major partial pressure affecting increase in total pressure were those of Ar, $CH_4$and He. The baking temperature during evacuation process was very important for high-vacuum package, the total pressure and partial pressure of $CH_4$ were decreased as the increase of baking temperature.

  • PDF

Glow discharge cleaning 법에 의한 stainless steel의 outgassing rate 감소

  • 임종연;이상균;서인용;최상철;홍승수;신용현;정광화
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.40-40
    • /
    • 1999
  • 가속기나 토카막과 같은 거대한 진공 장치의 용기 내벽을 청정화 하기 위해서는 용기 전체의 열처리(굽기, Baking)와 글로우 방전(Glow discharge) 법을 병행하여 사용한다. Baking은 일반 기체(N2, O2, 그리고 CO2)와 물(H2O)의 탈착에 효과적이고, Glow discharge cleaning은 탄소(Carbon-based)와 산소(Oxygen-based) 화합물의 탈착에 효과적이다. 특히 Glow discharge cleaning의 경우에는 전극의 모양, 진공 용기의 재질과 모양, 전극간의 거리, 사용되는 반응 기체의 압력 등에 따라 그 효과에 큰 차이가 있으므로 다각적인 연구가 필요하다. 본 연구에서는 그림 1과 같이 시험용 스테인레스(AISI 304와 AISI 316LN) 진공 용기를 설치하고, 시험 용기의 한쪽은 배기 용기와 oriffice로, 다른 편은 불순물의 정성.정량 분석을 위해 RGA(Residual gas analyser) 용기와 oriffice로 연결하였다. 전체 시스템 중에서 배기 부분과 분석 부분은 15$0^{\circ}C$에서 24시간 가열하여 전체의 기저 진공도를 1$\times$10-8Torr로 하였다. 기저 진공도의 용기에 고순도의 반응기체 (He, Ar, Ar+He, Ar+H2, Ar+N2 등)를 주입한후, DC 전압(0.8~1.5kV)을 변화하며 글로우 방전의 최적조건을 찾았다. 방전 동안 시험용 용기에서 방출되는 반응 기체 이외의 기체를 RGA로 측정하였고 외부에 Thermocouple을 여러곳에 장착하여 온도 변화를 측정하였다. 이상의 결과로부터 진공 용기 표면적으로부터의 불순물 탈착(desorption)과 불순물 분석, 플라즈마와 내벽의 상호작용등에 대한 결론을 얻을 수 있었다. 또한 Baking과 Glow discharge cleaning을 동시에 수행하여 Baking 온도의 낮춤에 따른 영향 평가도 수행하였다.

  • PDF

A study on the indium purification for electronic materials by zone refining (대정제법에 의한 전자재료용 indium정제에 관한 연구)

  • 김백년;김선태;송복식;문동찬
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.130-137
    • /
    • 1994
  • Indium, element of group III, was refined by using zone refining for high purity refinement. We have found the impurities of T1, Zn, Fe, Cd, Pb, Ni, Cu, Sn in the refined indium with ICP-AES, so that 3.9 weight ppm of T1 was reduced to less than 1 ppm, 1.0 weight ppm of Zn was reduced to 0.7 ppm, 2.8 weight ppm of Cd was reduced to 2.5 ppm and 14.0 weight ppm of Sn was reduced to 6.7 ppm with 5 melten zone passes only. 3.9 weight ppm of T1 was reduced to less than 1 ppm, 1.0 weight ppm of Zn was reduced to 0.3 ppm, 2.8 weight ppm of Cd was reduced to less than 1.0 ppm and 14.0 weight ppm of Sn was reduced to 0.4 ppm after vacuum baking with 5 melten zone passes. The surface morpholgy of metal Indium thin film in each conditions showed that porosities were reduced in the front of sampled ingot after vacuum baking with 5 zone melten zone passes. The average electrical resistivity of Indium thin film was reduced from 1.4*10$^{-3}$ .ohm.-cm in Indium origin ingot to 7.9*10$^{-6}$ .ohm.-cm after zone refined with 5 melten zone passes.

  • PDF