• Title/Summary/Keyword: Vacuum Assistant Resin Transfer Molding (VARTM)

Search Result 1, Processing Time 0.018 seconds

Comparison of the Fatigue Behaviors of FRP Bridge Decks and Reinforced Concrete Conventional Decks Under Extreme Environmental Conditions

  • Kwon, Soon-Chul;Piyush K. Dutta;Kim, Yun-Hae;Anido, Roberto-Lopez
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper summarizes the results of the fatigue test of four composite bridge decks in extreme temperatures (-30$^{\circ}C$ and 50$^{\circ}C$ ). The work was performed as part of a research program to evaluate and install multiple FRP bridge deck systems in Dayton, Ohio. A two-span continuous concrete deck was also built on three steel girders for the benchmark tests. Simulated wheel loads were applied simultaneously at two points by two servo-controlled hydraulic actuators specially designed and fabricated to perform under extreme temperatures. Each deck was initially subjected to one million wheel load cycles at low temperature and another one million cycles at high temperature. The results presented in this paper correspond to the fatigue response of each deck for four million load cycles at low temperature and another four million cycles at high temperature. Thus, the deck was subjected to a total of ten million cycles. Quasi-static load-deflection and load-strain responses were determined at predetermined fatigue cycle levels. Except for the progressive reduction in stiffness, no significant distress was observed in any of the composite deck prototypes during ten million load cycles. The effects of extreme temperatures and accumulated load cycles on the load-deflection and load-strain response of FRP composite and FRP-concrete hybrid bridge decks are discussed based on the experimental results.