• Title/Summary/Keyword: Vacuum Arc Deposition

Search Result 68, Processing Time 0.033 seconds

Comparison of characteristics of MgO films deposited by vacuum arc method with other methods. (진공아크 증착법과 다른 공정에 의해 증착된 MgO 박막 특성 비교)

  • 이은성;김종국;이성훈;이건환
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.112-117
    • /
    • 2003
  • MgO films is widely used in plasma display panel (PDP) technology. In this work, structural and optical properties of the MgO films deposited by e-beam evaporation, reactive magnetron sputtering, which are commercially used, and arc deposition were compared. MgO thin films were deposited on glass substrates by vacuum arc deposition equipment using a magnesium metal target at various oxygen gas flows. In order to investigate the packing density by ellipsometer, to measure reasonable erosion-rates of the MgO protective layers, we introduced an acceleration test method, namely, Ar+ ion beam induced erosion test. Also, XPS and UV test were adopted to examine the effect of the moisture on the optical transmittance of the MgO protective layers, which showed that these of MgO films by arc deposition method sustained more 90% and were insensitive to effect of the moisture. XRD and AFM have been also used to study behaviors of the structure and surface morphology.

Optimization of tetrahedral amorphous carbon (ta-C) film deposited with filtered cathodic vacuum arc through Taguchi robust design (다구찌 강건 설계를 통한 자장 여과 아크 소스로 증착된 사면체 비정질 탄소막의 최적화)

  • Kwak, Seung-Yun;Jang, Young-Jun;Ryu, Hojun;Kim, Jisoo;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.53-61
    • /
    • 2021
  • The properties of tetrahedral amorphous Carbon (ta-C) film can be determined by multiple parameters and comprehensive effects of those parameters during a deposition process with filtered cathodic vacuum arc (FCVA). In this study, Taguchi method was adopted to design the optimized FCVA deposition process of ta-C for improving deposition efficiency and mechanical properties of the deposited ta-C thin film. The influence and contribution of variables, such as arc current, substrate bias voltage, frequency, and duty cycle, on the properties of ta-C were investigated in terms of deposition efficiency and mechanical properties. It was revealed that the deposition rate was linearly increased following the increasing arc current (around 10 nm/min @ 60 A and 17 nm/min @ 100A). The hardness and ID/IG showed a correlation with substrate bias voltage (over 30 GPa @ 50 V and under 30 GPa @ 250 V). The scratch tests were conducted to specify the effect of each parameter on the resistance to plastic deformation of films. The analysis on variances showed that the arc current and substrate bias voltage were the most effective controlling parameters influencing properties of ta-C films. The optimized parameters were extracted for the target applications in various industrial fields.

Study on Improvement of Diamond Deposition on Al2O3 Ceramic Substrates by a DC Arc Plasmatron

  • Kang, In-Je;Joa, Sang-Beom;Chun, Se-Min;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.457-457
    • /
    • 2012
  • We presented plasma processing using a DC Arc Plasmatron for diamond deposition on Al2O3 ceramic substrates. Plasma surface treatments were conducted to improve deposition condition before processing for diamond deposition. The Al2O3 ceramic substrates deposited, $5{\times}15mm^2$, were investigated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD). Properties of diamond (111), (220) and (311) peaks were shown in XRD. We identified nanocrystalline diamond films on substrates. The results showed that deposition rate was approximately $2.2{\mu}m/h$ after plasma surface treatments. Comparing the above result with a common processing, deposition rate was improved. Also, the surface condition was improved more than a common processing for diamond deposition on Al2O3 ceramic substrates.

  • PDF

Microstructure and Tribological Properties of Ti-Si-C-N Nanocomposite Coatings Prepared by Filtered Vacuum Arc Cathode Deposition

  • Elangovan, T.;Kim, Do-Geun;Lee, Seung-Hun;Kim, Jong-Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.54-54
    • /
    • 2011
  • The demand for low-friction, wear and corrosion resistant components, which operate under severe conditions, has directed attentions to advanced surface engineering technologies. The Filtered Vacuum Arc Cathode Deposition (FVACD) process has demonstrated atomically smooth surface at relatively high deposition rates over large surface areas. Preparation of Ti-Si-C-N nanocomposite coatings on (100) Si and stainless steel substrates with tetramethylsilane (TMS) gas pressures to optimize the film preparation conditions. Ti-S-C-N coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, nanoindentation, Rockwell C indentation and ball-on-disk wear tests. The XRD results have confirmed phase formation information of TiSiCN coatings, which shows mixing of TiN and TiC structure, corresponding to (111), (200) and (220) planes of TiCN. The chemical composition of the film was investigated by XPS core level spectra. The binding energy of the elements present in the films was estimated using XPS measurements and it shows present of elemental information corresponding to Ti2p, N1s, Si 2p and C1. Film hardness and elastic modulus were measured with a nano-indenter, and film hardness reached 40 GPa. Tribological behaviors of the films were evaluated using a ball-on-disk tribometer, and the films demonstrated properties of low-friction and good wear resistance.

  • PDF

The Magnetic Filtering Vacuum Arc Film Deposition System and Its Applications

  • Wang, G.F.;Zhang, H.X.;Zhang, H.J.;Zhu, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.137-140
    • /
    • 1997
  • A cathodic arc with beam filter is employed for the deposition of metallic and hydrogen-free amorphous carbon films. A solenoid filter is used to prevent macropaticles and nonionized atoms from reaching the substrate. The detail transport characters of the filter are presented in the paper. With an optmum filter arrangement we are able to obtain a filter output of 18.4% of the total number of ions produced by the vacuum arc discharge. The deposited amorphous cabon thin film contains no hydrogen and a high fraction of $sp^3$ is determined by XPS. A dense Ti film deposited on H13 steel improves the corrosion resistance of the H13 steel and significant improvements of corrosion resistance were observed by implanting Ti, C in the film.

  • PDF

Filtered Plasma Deposition and MEVVA Ion Implantation

  • Liu, A.D.;Zhang, H.X.;Zhang, T.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.46-48
    • /
    • 2003
  • The modification of metal surface by ion implantation with MEVVA ion implanter and thin film deposition with filtered vacuum arc plasma device is introduced in this paper. The combination of ion implantation and thin film deposition is proved as a better method to improve properties of metal surface.

Arc Ion Plating Deposition System의 Bias 종류에 따른 TiN 박막의 특성평가

  • Kim, Wang-Ryeol;Park, Min-Seok;Kim, Dae-Yeong;Kim, Hyeon-Seung;Gwon, Min-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.208-208
    • /
    • 2012
  • 최근 환경문제가 많이 제기되면서 친환경적 운송수단인 자전거 개발과 관련하여 다양한 기술개발이 이루어지고 있다. 그 중 고부가가치의 서스펜션 포크의 프레임에 고기능성 표면처리로 Arc ion plating deposition system (AIPDS)을 이용하여 부식, 내마모 특성이 뛰어난 TiN 박막을 증착시켰다. AIPDS는 기존의 arc system과 달리 다원계 소재 코팅 공정조건 확립을 위하여 chamber wall에 2개의 rectangular type sputter source를 장착하고 소재의 pre-treatment 용 linear type ion source를 설치하였다. 장비의 Chamber 중앙에는 pipe형 arc cathode를 설치하였으며, 그 주위를 anode 역할을 하는 copper 코일로 감아 이는 발생한 arc를 target인 cathode 축을 중심으로 방향성을 가지고 회전하여 진행 할 수 있도록 유도 하였다. 이 시스템에서 증착된 TiN 박막은 bias 전압 변화에 따른 박막의 구조 및 물성을 평가하였다. XRD 장비를 통하여 TiN 박막의 상분석을 진행하였고, 마모테스터, 원자현미경, 마이크로 비커스 경도기 등을 이용하여 기계적 특성을 평가하였다.

  • PDF

HIPIMS Arc-Free Reactive Deposition of Non-conductive Films Using the Applied Material ENDURA 200 mm Cluster Tool

  • Chistyakov, Roman
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.96-97
    • /
    • 2012
  • In nitride and oxide film deposition, sputtered metals react with nitrogen or oxygen gas in a vacuum chamber to form metal nitride or oxide films on a substrate. The physical properties of sputtered films (metals, oxides, and nitrides) are strongly influenced by magnetron plasma density during the deposition process. Typical target power densities on the magnetron during the deposition process are ~ (5-30) W/cm2, which gives a relatively low plasma density. The main challenge in reactive sputtering is the ability to generate a stable, arc free discharge at high plasma densities. Arcs occur due to formation of an insulating layer on the target surface caused by the re-deposition effect. One current method of generating an arc free discharge is to use the commercially available Pinnacle Plus+ Pulsed DC plasma generator manufactured by Advanced Energy Inc. This plasma generator uses a positive voltage pulse between negative pulses to attract electrons and discharge the target surface, thus preventing arc formation. However, this method can only generate low density plasma and therefore cannot allow full control of film properties. Also, after long runs ~ (1-3) hours, depends on duty cycle the stability of the reactive process is reduced due to increased probability of arc formation. Between 1995 and 1999, a new way of magnetron sputtering called HIPIMS (highly ionized pulse impulse magnetron sputtering) was developed. The main idea of this approach is to apply short ${\sim}(50-100){\mu}s$ high power pulses with a target power densities during the pulse between ~ (1-3) kW/cm2. These high power pulses generate high-density magnetron plasma that can significantly improve and control film properties. From the beginning, HIPIMS method has been applied to reactive sputtering processes for deposition of conductive and nonconductive films. However, commercially available HIPIMS plasma generators have not been able to create a stable, arc-free discharge in most reactive magnetron sputtering processes. HIPIMS plasma generators have been successfully used in reactive sputtering of nitrides for hard coating applications and for Al2O3 films. But until now there has been no HIPIMS data presented on reactive sputtering in cluster tools for semiconductors and MEMs applications. In this presentation, a new method of generating an arc free discharge for reactive HIPIMS using the new Cyprium plasma generator from Zpulser LLC will be introduced. Data (or evidence) will be presented showing that arc formation in reactive HIPIMS can be controlled without applying a positive voltage pulse between high power pulses. Arc-free reactive HIPIMS processes for sputtering AlN, TiO2, TiN and Si3N4 on the Applied Materials ENDURA 200 mm cluster tool will be presented. A direct comparison of the properties of films sputtered with the Advanced Energy Pinnacle Plus + plasma generator and the Zpulser Cyprium plasma generator will be presented.

  • PDF

Study on the deposition rate and vapor distribution of Al films prepared by vacuum evaporation and arc-induced ion plating (증착방법에 따른 Al 피막의 증착율 및 증기분포에 관한 연구)

  • 정재인;정우철;손영호;이득진;박성렬
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.207-215
    • /
    • 2000
  • Al films on cold-rolled steel sheet have been prepared by vacuum evaporation and arc-induced ion plating, respectively, and the evaporation rate and vapor distribution (thickness distribution over the substrate) have been investigated according to deposition conditions. The arc-induced ion plating (AIIP) method have been employed, which makes use of arc-like discharge current induced by ionization electrode located near the evaporation source. The AIIP takes advantage of high ionization rate compared with conventional ion plating, and can be carried out at low pressure of less than $10^{-4}$ torr. Very high evaporation rate of more than 2.0 mu\textrm{m}$/min could be achieved for Al evaporation using alumina liner by electron beam evaporation. The geometry factor n for the $cos^{n/\phi}$ vapor distribution, which affects the thickness distribution of films at the substrate turned out to be around 1 for vacuum evaporation, while it features around 2 or higher for ion plating. For the ion plated films, it has been found that the ionization condition and substrate bias are the main parameters to affect the thickness distribution of the films.

  • PDF

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF