• Title/Summary/Keyword: Vaccine strategy

Search Result 84, Processing Time 0.037 seconds

Cytotoxic T Lymphocytes Elicited by Dendritic Cell-Targeted Delivery of Human Papillomavirus Type-16 E6/E7 Fusion Gene Exert Lethal Effects on CaSki Cells

  • Wu, Xiang-Mei;Liu, Xing;Jiao, Qing-Fang;Fu, Shao-Yue;Bu, You-Quan;Song, Fang-Zhou;Yi, Fa-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2447-2451
    • /
    • 2014
  • Human papillomavirus (HPV) is the primary etiologic agent of cervical cancer. Consideration of safety and non human leukocyte antigen restriction, protein vaccine has become the most likely form of HPV therapeutic vaccine, although none have so far been reported as effective. Since tumor cells consistently express the two proteins E6 and E7, most therapeutic vaccines target one or both of them. In this study, we fabricated DC vaccines by transducing replication-defective recombinant adenoviruses expressing E6/E7 fusion gene of HPV-16, to investigate the lethal effects of specific cytotoxic T lymphocytes (CTL) against CaSki cells in vitro. Mouse immature dendritic cells (DC) were generated from bone marrow, and transfected with pAd-E6/E7 to prepare a DC vaccine and to induce specific CTL. The surface expression of CD40, CD68, MHC II and CD11c was assessed by flow cytometry (FCM), and the lethal effects of CTL against CaSki cells were determined by DAPI, FCM and CCK-8 methods. Immature mouse DC was successfully transfected by pAd-E6/E7 in vitro, and the transfecting efficiency was 40%-50%. A DC vaccine was successfully prepared and was used to induce specific CTL. Experimental results showed that the percentage of apoptosis and killing rate of CaSki cells were significantly increased by coculturing with the specific CTL (p <0.05). These results illustrated that a DC vaccine modified by HPV-16 E6/E7 gene can induce apoptosis of CaSki cells by inducing CTL, which may be used as a new strategy for biological treatment of cervical cancer.

Effectiveness of Two-dose Varicella Vaccination: Bayesian Network Meta-analysis

  • Kwan Hong;Young June Choe;Young Hwa Lee;Yoonsun Yoon;Yun-Kyung Kim
    • Pediatric Infection and Vaccine
    • /
    • v.31 no.1
    • /
    • pp.55-63
    • /
    • 2024
  • Purpose: A 2-dose varicella vaccination strategy has been introduced in many countries worldwide, aiming to increase vaccine effectiveness (VE) against varicella infection. In this network meta-analysis, we aimed to provide a comprehensive evaluation and an overall estimated effect of varicella vaccination strategies, via a Bayesian model. Methods: For each eligible study, we collected trial characteristics, such as: 1-dose vs. 2-dose, demographic characteristics, and outcomes of interest. For studies involving different doses, we aggregated the data for the same number of doses delivered into one arm. The preventive effect of 1-dose vs. 2-dose of varicella vaccine were evaluated in terms of the odds ratio (OR) and corresponding equal-tailed 95% confidence interval (95% CI). Results: A total of 903 studies were retrieved during our literature search, and 25 interventional or observational studies were selected for the Bayesian network meta-analysis. A total of 49,265 observed individuals were included in this network meta-analysis. Compared to the 0-dose control group, the OR of all varicella infections were 0.087 (95% CI, 0.046-0.164) and 0.310 (95% CI, 0.198-0.484) for 2-doses and one-dose, respectively, which corresponded to VE of 69.0% (95% CI, 51.6-81.2) and VE of 91.3% (95% CI, 83.6-95.4) for 1- and 2-doses, respectively. Conclusions: A 2-dose vaccine strategy was able to significantly reduce varicella burden. The effectiveness of 2-dose vaccination on reducing the risk of infection was demonstrated by sound statistical evidence, which highlights the public health need for a 2-dose vaccine recommendation.

Prospects for Immunological Intervention for Coccidiosis (닭 콕시듐병의 면역학적 접근에 대한 전망)

  • Lillehoj, H.S.
    • Korean Journal of Poultry Science
    • /
    • v.19 no.3
    • /
    • pp.161-176
    • /
    • 1992
  • Coccidiosis is caused by Eimeria infecting primarily the intestine of the susceptible host, thereby seriously impairing the growth and feed utilization of livestock and poultry. The genus Eimeria contains a number of obligate intracellular protozoan parasites with a complicated life-cycle involving both asexual and sexual stages of development. The desire to develop a vaccine against Eimeria has Promoted active research to elucidate the mechanisms of protective immunity and identification of candidate vaccine antigens. Protozoa are unique in their modes of transmission and nature of disease manifestations, the significance of which should be considered in the development of a control strategy. An intricate and complex interplay of different cell populations and cytokines is involved not only in the pathogenesis of coccidiosis but also in the development of protective immunity Thus, comprehensive understanding of the events leading to protection following Eimeria infection will be crucial for the development of an effective vaccine.

  • PDF

Development of adjuvant for effective oral vaccine application (경구백신의 효율적인 적용을 위한 면역 보조제 개발)

  • Kim, Sae-Hae;Seo, Ki-Weon;Kim, Ju;Jang, Yong-Suk
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.283-291
    • /
    • 2010
  • Vaccine is one of the best known and most successful applications of immunological theory to human health and it protects human life through inducing the immune response in systemic compartment. However, when we consider the fact that mucosal epithelium is exposed to diverse foreign materials including viruses, bacteria, and food antigens and protects body from entry of unwanted materials using layer of tightly joined epithelial cells, establishing the immunological barrier on the lining of mucosal surfaces is believed to be an effective strategy to protect body from unwanted antigens. Unfortunately, however, oral mucosal site, which is considered as the best target to induce mucosal immune response due to application convenience, is prone to induce immune tolerance rather than immune stimulation. Since intestinal epithelium is tightly organized, a prerequisite for successful mucosal vaccination is delivery of antigen to mucosal immune induction site including a complex system of highly specialized cells such as M cells. Consequently, development of efficient mucosal adjuvant capable of introducing antigens to mucosal immune induction site and overcome oral tolerance is an important subject in oral vaccine development. In this review, various approaches on the development of oral mucosal adjuvants being suggested for effective oral mucosal immune induction.

Development of monoclonal antibody against Porphyromonas gingivalis heat shock protein (Porphyromonas gingivali의 열충격단백-특이성 단클론항체의 개발)

  • Yi, Ni-Na;Lee, Ju-Youn;Kim, Sung-Jo;Choi, Jeom-II
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.11-21
    • /
    • 2007
  • Heat shock protein (HSP) is one of cellular protein commonly present in major periodontopathogenic bacteria as well as mammalian cells. The protein may play a role in the immunopathogenesis by modulating autoimmune reaction due to its high level of sequence homology between bacteria and human counterpart. Hence, identifying immunodomiant epitope of bacteria HSP that is cross-reactive to periodontopathogenic bacteria with a specificity to human HSP may comprise a critical strategy for development of a periodontal vaccine. The present study was performed to establish clones producing monoclonal antibody reactive to Porphyromonas gingivalis (p. gingivalis) HSP with a specificity to human HSP. 4 different hybridomas were cloned producing monoclonal IgG antibodies to P, gingivalis HSP and evaluated for their reactivity and specificity to other periodontopathogenic bacteria as well as to human HSP. These four monoclonal antibodies reacted with p. gingivalis HSP only with specificities to other bacteria tested and human HSP as well. The antigenic epitopes producing the 4 monoclonal antibody may be potentially developed as vaccine candidates. Further investigations are under way to identify more clones producing monoclonal antibodies reactive to P, gingivalis HSP and to other periodontopathogenic bacteria as well, while maintaining specificities to human counterpart.

Multiple Alternating Immunizations with DNA Vaccine and Replication-incompetent Adenovirus Expressing gB of Pseudorabies Virus Protect Animals Against Lethal Virus Challenge

  • Kim, Seon-Ju;Kim, Hye-Kyung;Han, Young-Woo;Aleyas, Abi G.;George, Junu A.;Yoon, Hyun-A;Yoo, Dong-Jin;Kim, Koan-Hoi;Eo, Seong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1326-1334
    • /
    • 2008
  • The prime-boost vaccination with DNA vaccine and recombinant viral vector has emerged as an effective prophylactic strategy to control infectious diseases. Here, we compared the protective immunities induced by multiple alternating immunizations with DNA vaccine (pCIgB) and replication-incompetent adenovirus (Ad-gB) expressing glycoprotein gB of pseudorabies virus (PrV). The platform of pCIgB-prime and Ad-gB-boost induced the most effective immune responses and provided protection against virulent PrV infection. However, priming with pCIgB prior to vaccinating animals by the DNA vaccine-prime and Ad-boost protocol provided neither effective immune responses nor protection against PrV. Similarly, boosting with Ad-gB following immunization with DNA vaccine-prime and Ad-boost showed no significant responses. Moreover, whereas the administration of Ad-gB for primary immunization induced Th2-type-biased immunity, priming with pCIgB induced Th1-type-biased immunity, as judged by the production of PrV-specific IgG isotypes and cytokine IFN-$\gamma$. These results indicate that the order and injection frequency of vaccine vehicles used for heterologous prime-boost vaccination affect the magnitude and nature of the immunity. Therefore, our demonstration implies that the prime-boost protocol should be carefully considered and selected to induce the desired immune responses.

A Study of Telematics Platform Realizatipn Strategy & Business Modelusing Tablet PC System (Tablet PC를 이용한 차세대 텔레메틱스 플랫폼 전략과 이를 응용한 비즈니스 모델에 관한 연구)

  • Kim Se-Joong;Kim Tae-Gyu
    • Management & Information Systems Review
    • /
    • v.15
    • /
    • pp.187-222
    • /
    • 2004
  • The existing fixed telematics facilities for car were restricting of efficiency, utilization, communication, possibility, so it become disconnected with reality in the domestic and foreign market within thy near future, like as the case of 'car-phone'. It is too difficult to make a various business model on the restrict basis. To solve these problems, We suggested Tablet PC system as a new mobile telematics platform. The telematics platform based on the Tablet PC realize the perfect office, because it shows an excellent portability, high power and extension, various input equipment, and environment of communication in the car. To realize this concreteness, it needs a proper marketing strategy for a new business model. For this purpose, We analyzed the structure of industry, selected a proper target market, and established the strategy of marketing. Additionally, We proposed new business models ; particularly Portal site, Car-Home network, Car Software Tuning, and T-Vaccine(Intelligent Car Inspection System). These are made possible by the only Tablet PC platform.

  • PDF

Effectiveness of inactivated hantavirus vaccine on the disease severity of hemorrhagic fever with renal syndrome

  • Yi, Yongjin;Park, Hayne;Jung, Jaehun
    • Kidney Research and Clinical Practice
    • /
    • v.37 no.4
    • /
    • pp.366-372
    • /
    • 2018
  • Background: An inactivated Hantaan virus vaccine (iHV) has been broadly used as a preventive strategy for hemorrhagic fever with renal syndrome (HFRS) by the South Korean Army. After the vaccination program was initiated, the overall incidence of HFRS cases was reduced in the military population. While there are about 400 HFRS cases annually, few studies have demonstrated the efficacy of the iHV in field settings. Therefore, this study aimed to evaluate the iHV efficacy on HFRS severity. Methods: From 2009 to 2017, HFRS cases were collected in South Korean Army hospitals along with patients' vaccination history. HFRS patients were classified retrospectively into two groups according to vaccination records: no history of iHV vaccination and valid vaccination. Vaccine efficacy on the severity of acute kidney injury (AKI) stage and dialysis events were investigated. Results: The effects of the iHV on renal injury severity in between 18 valid vaccinated and 110 non-vaccinated patients were respectively evaluated. In the valid vaccination group, six of the 18 HFRS patients (33.3%) had stage 3 AKI, compared to 60 of the 110 (54.5%) patients in the non-vaccination group. The iHV efficacy against disease progression ($VE_p$) was 58.1% (95% confidence interval, 31.3% to 88.0%). Conclusion: The iHV efficacy against the progression of HFRS failed to demonstrate statistically significant protection. However, different severity profiles were observed between the iHV and non-vaccination groups. Additional studies with larger populations are needed to demonstrate the effectiveness of the iHV in patients with HFRS.

Critical Adjuvant Influences on Preventive Anti-Metastasis Vaccine Using a Structural Epitope Derived from Membrane Type Protease PRSS14

  • Ki Yeon Kim;Eun Hye Cho;Minsang Yoon;Moon Gyo Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.33.1-33.19
    • /
    • 2020
  • We tested how adjuvants effect in a cancer vaccine model using an epitope derived from an autoactivation loop of membrane-type protease serine protease 14 (PRSS14; loop metavaccine) in mouse mammary tumor virus (MMTV)-polyoma middle tumor-antigen (PyMT) system and in 2 other orthotopic mouse systems. Earlier, we reported that loop metavaccine effectively prevented progression and metastasis regardless of adjuvant types and TH types of hosts in tail-vein injection systems. However, the loop metavaccine with Freund's complete adjuvant (CFA) reduced cancer progression and metastasis while that with alum, to our surprise, were adversely affected in 3 tumor bearing mouse models. The amounts of loop peptide specific antibodies inversely correlated with tumor burden and metastasis, meanwhile both TH1 and TH2 isotypes were present regardless of host type and adjuvant. Tumor infiltrating myeloid cells such as eosinophil, monocyte, and neutrophil were asymmetrically distributed among 2 adjuvant groups with loop metavaccine. Systemic expression profiling using the lymph nodes of the differentially immunized MMTV-PyMT mouse revealed that adjuvant types, as well as loop metavaccine can change the immune signatures. Specifically, loop metavaccine itself induces TH2 and TH17 responses but reduces TH1 and Treg responses regardless of adjuvant type, whereas CFA but not alum increased follicular TH response. Among the myeloid signatures, eosinophil was most distinct between CFA and alum. Survival analysis of breast cancer patients showed that eosinophil chemokines can be useful prognostic factors in PRSS14 positive patients. Based on these observations, we concluded that multiple immune parameters are to be considered when applying a vaccine strategy to cancer patients.

Nanotechnology Meet Immunology: Nanomaterials for Enhanced Immunity

  • Im, Yong-Taek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.92.2-92.2
    • /
    • 2013
  • The design and chemical synthesis of multifunctional nanomaterials have been providing potential applications in biomedical fields such as molecular imaging and drug delivery. Recently, bio-derived and/or synthetic nanostructured materials capable of modulating the immune system have been also issues of interest in immunology-related nanomedicine fields. In this talk, the recent research results on the development of nanostructured materials for enhanced immunity would be presented. I will introduce the chemical strategy for the combination of nanostructured materials and bioactive compounds to improve both anti-cancer immunity and vaccine delivery efficiency.

  • PDF