• Title/Summary/Keyword: VSWR

Search Result 622, Processing Time 0.024 seconds

A Study on the Improvement of MIMO Antenna Isolation for Mobile Applications (휴대 단말기용 MIMO 안테나의 격리도 향상에 관한 연구)

  • Yoon, In-Seop;Yan, Xiao-Jia;Kim, Sang-Uk;Jo, Yun-Hyun;Park, Hyo-Dal
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.987-992
    • /
    • 2015
  • In this paper, neutralization line structure have been employed to improve the isolation between the MIMO antenna system. The proposed MIMO antenna size is $116mm{\times}64mm{\times}5mm$ and designed on FR-4(${\varepsilon}r=4.4$) ground substrate. Neutralization line was applied to enhance isolation between the each antenna elements. The fabricated antenna satisfied a VSWR below 3 in LTE band B13 and the isolation between the MIMO antenna system is presented below -15dB. On the H-plane, antenna shows an omnidirectional pattern. In LTE band B13, the antenna presents a gain of a -2.6dBi ~-1.18dBi and radiation efficiency of 33.49% ~ 46.45%. Comparing measurement result with the outcome of simulation, the proposed MIMO antenna is expected to be applied for mobile application.

Design of Wideband Antenna for IEEE 802.11a (IEEE 802.11a용 광대역 안테나 설계)

  • Ju Seong-Nam;Kim Pyoung-Gug;Kim Kab-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.416-422
    • /
    • 2006
  • In this paper, we have designed and favricated the high gain and wideband microstrip patch antenna including IEEE 802.11a. To widen the bandwidth of microstrip antenna, firstly we have used the microstrip line-coaxial probe feeding method and inserted a U-slot in the rectangular patch. Secondly, to improve the antenna gain, we have used a $2{\times}2$ array structure. From the measured results, wideband characteristics of 1 GHz bandwidth($5.110{\sim}6.142$ GHz) for VSWR<2 was obtained. The measured eain was 13 dBi in both the E-plane and H-plane at the frequency of 5.15 GHz, 5.35 GHz, 5.50 GHz, and 5.85 GHz.

Design of 4-Way Wilkinson Divider with Waveguide to Stripline Transition Used in The Monopulse Radar Front-end (도파관 천이 구조를 갖는 모노펄스 레이더용 4-Way 윌킨슨 분배기 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.69-76
    • /
    • 2010
  • From the present paper we researched about the design of 4-Way Wilkinson divider with waveguide to stripline transition which used to split the LO signal with equi-amplitude and equi-phase in the X-Band Monopulse radar RF front-end. The monopulse radar front end operating in the X-Band is composed of 3 waveguide reception mixers which down convert sum, azimuth and elevation signal to IF and one SSB waveguide mixers which generate X-Band test signal. It is required the 4-way divider with low loss, equi amplitude and equiphase splitting the LO signal to provide the LO signal to each mixer consisting RF frontend. In this paper we designed and fabricated the 4-Way Wilkinson divider with waveguide transition to divide the LO signal into equi-amplitude and equi-phase. The fabricated Wilkinson divider have the insertion loss 6.8dB, VSWR 1.06~1.28, and phase balance maximum 4.5degree for each output ports.

Multi-Band Chip Slot Antenna for Mobile Devices (무선 통신 기기에 적합한 다중 대역 칩 슬롯 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1264-1271
    • /
    • 2009
  • In this paper, the chip slot antenna which is used for mobile devices and designed for multi-band is proposed. The proposed antenna is comprised of a chip antenna(10 mm$\times$20 mm$\times$1.27 mm) and a system circuit board(30 mm$\times$60 mm$\times$0.8 mm). The chip slot antenna is mounted on the system circuit board and the end of F-type strip line which is patterned on the chip antenna is connected by a via with a ground plane of the system circuit board. So, a chip antenna radiates effectively the energy by transition between a microstrip line of the system circuit board and a open slot structure of the chip antenna. In the results of proposed antenna, impedance bandwidth of 3:1 VSWR(-6 dB return loss) is 1.98 GHz(1.61~3.59 GHz) and 0.8 GHz(5.2~6 GHz). So, it can cover multi-band of DCS, PCS, UMTS, WLAN. The proposed antenna can be applied to mobile devices.

Design and Analysis on Compact Antenna for Handsets (핸드폰용 소형안테나의 설계 및 해석)

  • Choi, In-Tae;Shin, Ho-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.557-564
    • /
    • 2015
  • In this paper, the compact antenna for handsets is designed using FR-4 substrate for LTE(905-960 MHz), WCDMA(1922.8-2167.2 MHz), DCS(1710.2-1879.8 MHz), US-PCS(1850.2-1989.8 MHz), WLAN(2400-2483 MHz). The CPW line with many advantages and a spiral geometry for miniaturization is proposed. Widths of a spiral line are constant, and three stubs are added to broaden the bandwidth. Lengths and widths of three stubs are gradually changed. And proposed antenna is optimized for VSWR<3, designed, and fabricated. The dimension of this antenna is only $40{\times}30{\times}1mm3$ which is compact. It has been demonstrated by experiment that the compact planar antenna can be used as the mobile communication LTE antenna for 4G.

Design of Circular Microstrip Patch 2×2 Array Antenna for S-band Applications (S-밴드용 원형 마이크로스트립 패치 2×2 배열 안테나의 설계)

  • Ahn, Yong-Bok;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • In this paper, we have designed and fabricated microstrip antenna of S-band for the wireless LAN and the ISM. It array $2{\times}2$ circular patch antenna elements at plane instead of conventional rectangular patch antenna elements. It optimized to size calculated of single patch antenna. The radiation elements distance is array $0.24{\lambda}$. The fabricated circular patch antenna decreased 8% of size compared to the conventional rectangular patch antenna. In the E-plane, designed circular microstrip patch $2{\times}2$ array antenna gain is 12.7[dBi], half power beam width is $40^{\circ}$ and in the H-plane, antenna gain is 12.1[dBi], half power beam width is $45^{\circ}$. Bandwidth is 250[MHz] (VSWR < 2).

  • PDF

A Compact CPW-fed Antenna consisted of Three Folded Patches for Mobile Handsets (이동통신용 단말기를 위한 3개의 폴디드 패치로 이루어진 소형 CPW 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2773-2778
    • /
    • 2015
  • In this paper, the compact antenna with three folded patches for use in a number of bands of LTE, WCDMA, US-PCS, and WLAN at the same time is proposed. As the changes in widths of the 3 patches to widen the insufficient bandwidth are given, it is optimized for $S_{11}$<-6dB(VSWR<3). The CPW with a number of advantages is used in the proposed antenna. The proposed antenna is designed and fabricated with FR4 substrate to the size of $44.9{\times}35{\times}1mm^3$. Fabricated antenna has within $S_{11}$<-6dB under operating bands. And measured characteristics of radiation patterns and gains are shown under operating bands.

Multi-Band Antenna Using Folded Monopole Line and Log-Periodic Structure (폴디드 모노폴 선로가 부착된 대수주기 구조를 이용한 다중대역 안테나)

  • Lee, hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.142-146
    • /
    • 2014
  • In this paper, an antenna which has quad band in GSM/DCS/PCS/Bluetooth is proposed. This structure is designed with miniaturization for wide band characteristic based on monopole antenna and log-periodic toothed trapezoid patch antenna which has slots. To achieve multi-bandwidth is used the microstrip line on the substrate. An antenna size is $35mm{\times}20mm$ on FR-4(${\varepsilon}r=4.4$) ground substrate of $35mm{\times}75mm{\times}1mm$ size. And proposed antenna is satisfied with impedance bandwidth(VSWR ${\leq}$ 3). The simulated maximum radiation gain is 1.92 dBi, 3.26 dBi, 3.97 dBi at the center frequency of 0.92 GHz, 1.97 GHz, 2.45 GHz, respectively.

RFID Reader Antenna with Hilbert Curve Fractal Structure over Partially Grounded Plane (Hilbert 커브 프랙탈 구조를 이용한 부분 접지된 RFID 리더 안테나)

  • Lim, Jung-Hyun;Kang, Bong-Soo;Jwa, Jeong-Woo;Kim, Heung-Soo;Yang, Doo-Yeong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.30-38
    • /
    • 2007
  • In this paper, UHF band RFID reader antenna using filbert curve fractal structure and adding the partially grounded plane at the bottom of antenna, which has a resonant frequency at 910MHz, is proposed. Input impedance of antenna is matched with the feed line of 50ohm by varying the length and width of line segment making up the antenna, and by moving the position of via hole. The gain and directivity of antenna is enhanced as varying the dimension of the partially grounded plane and adding the line segment. The size of fabricated antenna is $68mm\times68mm$. The impedance band width(VSWR<2) is $882\sim942MHz$. The return loss and the gain of fabricated antenna are -18.2dB, 5.3dBi at 910MHz.

Bandwidth Enhancement of Double-Dipole Quasi-Yagi Antenna Using Modified Microstrip-to-Coplanar Strip line Balun (변형된 마이크로스트립-동일면 스트립 선로 밸런을 이용한 이중 다이폴 준-야기 안테나의 대역폭 향상)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.457-463
    • /
    • 2016
  • In this paper, a method of enhancing the bandwidth of a double-dipole quasi-Yagi antenna (DDQYA) using a modified integrated balun is presented. The modified integrated balun consists of a microstrip (MS) line inserted along the center of a coplanar strip (CPS) line and the end of the MS line is connected to the CPS line through a shorting pin at the feed point. The geometry of the modified integrated balun is adjusted to improve the bandwidth of the DDQYA. In addition, the performance of the proposed balun in a back-to-back configuration is compared with a conventional balun. The proposed antenna with the optimized modified integrated balun is fabricated on an FR4 substrate, and the experiment results show that the antenna has a frequency band of 1.56-3.04 GHz(64.4%) for a VSWR < 2, which shows enhanced bandwidth compared to the DDQYA with the conventional balun.