• Title/Summary/Keyword: VSP 자료 전처리과정

Search Result 2, Processing Time 0.015 seconds

Imaging Fractures by using VSP Data on Geothermal Site (지열지대 VSP 자료를 이용한 파쇄대 영상화 연구)

  • Lee, Sang-Min;Byun, Joong-Moo;Song, Ho-Cheol;Park, Kwon-Gyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • Attention has been focused on geothermal energy as an alternative energy because it is continuously operable without external supply. Most of geothermal anomalies in Korea are related to deep circulation of groundwater through a fracture system in granite area. Therefore it is very important to understand the distribution of the fracture system which is the main channel of ground water. In this research, we constructed the velocity models with a fracture system and the layered sediments, respectively, and generated synthetic data sets with them to verify the presented vertical seismic profiling (VSP) preprocessing scheme. We compared the results from conventional VSP preprocessing flow to those from VSP preprocessing flow considering fracture system. We noticed that the preprocessing flow considering fracture system retains more sufficient signal including down-going wave than conventional preprocessing. In addition, we applied 3D VSP prestack phase screen migration to the preprocessed reversed VSP (RVSP) data from Seokmo Island so that we were able to image fracture structure of the geothermal site in Seokmo Island.

Multicomponent RVSP Survey for Imaging Thin Layer Bearing Oil Sand (박층 오일샌드 영상화를 위한 다성분 역VSP 탐사)

  • Jeong, Soo-Cheol;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.234-241
    • /
    • 2011
  • Recently, exploration and development of oil sands are thriving due to high oil price. Because oil sands reservoir usually exists as a thin layer, multicomponent VSP, which has the advantage of the high-resolution around the borehole, is more effective than surface seismic survey in exploring oil sand reservoir. In addition, prestack phase-screen migration is effective for multicomponent seismic data because it is based on an one-way wave equation. In this study, we examined the applicability of the prestack phase-screen migration for multicomponent RVSP data to image the thin oil sand reservoir. As a preprocessing tool, we presented a method for separating P-wave and PS-wave from multicomponent RVSP data by using incidence angle and rotation matrix. To verify it, we have applied the developed wavefield separation method to synthetic data obtained from the velocity model including a horizontal layer and dipping layers. Also, we compared the migrated image by using P-wave with that by using PS-wave. As a result, the PS-wave migrated image has higher resolution and wide coverage than P-wave migrated image. Finally, we have applied the prestack phase-screen migration to the synthetic data from the velocity model simulating oil sand reservoir in Canada. The results show that the PS-wave migrated image describe the top and bottom boundaries of the thin oil sand reservoir more clearly than the P-wave migrated image.