• Title/Summary/Keyword: VSMC

Search Result 73, Processing Time 0.024 seconds

Enhancement of Endotoxin-Induced Prostaglandin Synthesis by Elevation of Glucose Concentration in Primary Cultured Rat Vascular Smooth Muscle Cells (일차 배양 혈관 평활근 세포에서 포도당 농도에 의한 엔도톡신 유도 프로스타글란딘 합성 변화)

  • Lee, Soo-Hwan;Woo, Hyun-Goo;Kim, Ji-Young;Baik, Eun-Joo;Moon, Chang-Hyun
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.782-788
    • /
    • 1997
  • This study was designed to characterize glucose-enhancing effects on endotoxin-induced prostaglandin production in primary cultured rat vascular smooth muscle cells (VSMC). High glucose treatment significantly augmented prostaglandin (PG) synthesis in lipopolysaccharide (LPS)-stimulated VSMC and this effect was maximal at the concentration of 4mg/ml. It has been reported that increases in glucose metabolism through sorbitol pathway could alter the cytosolic $NADH/NAD^+$ ratio and this change favors de novo synthesis of diacylglycerol (DAG) and, in turn. Results in the activation of protein kinase C (PKC) in vascular tissues. Protein kinase C (PKC) inhibitors, staurosporin and H7, blocked the glucose enhancing effect, and DAG, a PKC activator, significantly increased the PG production stimuated by LPS. Sodium pyruvate, which can reverse the alteration in cytosolic NADH/NAD+ ratio, reduced the high glucose effect on PG production. And also, zopolrestat, a strong aldose reductase inhibitor, almost completely blocked the augmentation effect of glucose on PG synthesis. Arachidonic acid release was significantly increased in high glucose treated group, which implied the increase in $PLA_2$ activity was associated with glucose enhancing effect. Metabloic, labeling study clearly showed that de novo synthesis of prostaglandin H synthase-2 (PGHS-2) is greatly increased in high glucose treated group and this was mitigated by the treatment of zopolrestat. Taken together, the activation of PKC through sorbitol pathway increased the activities of $PLA_2$ and PGHS which resulted in the augmentation in LPS-induced PG production in high glucose treated VSMC.

  • PDF

Gamma-aminobutyric acid-salt attenuated high cholesterol/high salt diet induced hypertension in mice

  • Son, Myeongjoo;Oh, Seyeon;Lee, Hye Sun;Choi, Junwon;Lee, Bae-Jin;Park, Joung-Hyun;Park, Chul Hyun;Son, Kuk Hui;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Excessive salt intake induces hypertension, but several gamma-aminobutyric acid (GABA) supplements have been shown to reduce blood pressure. GABA-salt, a fermented salt by L. brevis BJ20 containing GABA was prepared through the post-fermentation with refined salt and the fermented GABA extract. We evaluated the effect of GABA-salt on hypertension in a high salt, high cholesterol diet induced mouse model. We analyzed type 1 macrophage (M1) polarization, the expression of M1 related cytokines, GABA receptor expression, endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) proliferation, and medial thicknesses in mice model. GABA-salt attenuated diet-induced blood pressure increases, M1 polarization, and TNF-α and inducible nitric oxide synthase (NOS) levels in mouse aortas, and in salt treated macrophages in vitro. Furthermore, GABA-salt induced higher GABAB receptor and endothelial NOS (eNOS) and eNOS phosphorylation levels than those observed in salt treated ECs. In addition, GABA-salt attenuated EC dysfunction by decreasing the levels of adhesion molecules (E-selectin, Intercellular Adhesion Molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) and of von Willebrand Factor and reduced EC death. GABA-salt also reduced diet-induced reductions in the levels of eNOS, phosphorylated eNOS, VSMC proliferation and medial thickening in mouse aortic tissues, and attenuated Endothelin-1 levels in salt treated VSMCs. In summary, GABA-salt reduced high salt, high cholesterol diet induced hypertension in our mouse model by reducing M1 polarization, EC dysfunction, and VSMC proliferation.

Inhibition of VRK1 suppresses proliferation and migration of vascular smooth muscle cells and intima hyperplasia after injury via mTORC1/β-catenin axis

  • Sun, Xiongshan;Zhao, Weiwei;Wang, Qiang;Zhao, Jiaqi;Yang, Dachun;Yang, Yongjian
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.244-249
    • /
    • 2022
  • Characterized by abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), neointima hyperplasia is a hallmark of vascular restenosis after percutaneous vascular interventions. Vaccinia-related kinase 1 (VRK1) is a stress adaption-associated ser/thr protein kinase that can induce the proliferation of various types of cells. However, the role of VRK1 in the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury remains unknown. We observed increased expression of VRK1 in VSMCs subjected to platelet-derived growth factor (PDGF)-BB by western blotting. Silencing VRK1 by shVrk1 reduced the number of Ki-67-positive VSMCs and attenuated the migration of VSMCs. Mechanistically, we found that relative expression levels of β-catenin and effectors of mTOR complex 1 (mTORC1) such as phospho (p)-mammalian target of rapamycin (mTOR), p-S6, and p-4EBP1 were decreased after silencing VRK1. Restoration of β-catenin expression by SKL2001 and re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (siTsc1) both abolished shVrk1-mediated inhibitory effect on VSMC proliferation and migration. siTsc1 also rescued the reduced expression of β-catenin caused by VRK1 inhibition. Furthermore, mTORC1 re-activation failed to recover the attenuated proliferation and migration of VSMC resulting from shVrk1 after silencing β-catenin. We also found that the vascular expression of VRK1 was increased after injury. VRK1 inactivation in vivo inhibited vascular injury-induced neointima hyperplasia in a β-catenin-dependent manner. These results demonstrate that inhibition of VRK1 can suppress the proliferation and migration of VSMC and neointima hyperplasia after vascular injury via mTORC1/β-catenin pathway.

Heat shock protein 90 inhibitor AUY922 attenuates platelet-derived growth factor-BB-induced migration and proliferation of vascular smooth muscle cells

  • Kim, Jisu;Lee, Kang Pa;Kim, Bom Sahn;Lee, Sang Ju;Moon, Byung Seok;Baek, Suji
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.241-248
    • /
    • 2020
  • Luminespib (AUY922), a heat shock proteins 90 inhibitor, has anti-neoplastic and antitumor effects. However, it is not clear whether AUY922 affects events in vascular diseases. We investigated the effects of AUY922 on the platelet-derived growth factor (PDGF)-BB-stimulated proliferation and migration of vascular smooth muscle cells (VSMC). VSMC viability was detected using the XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reagent. To detect the attenuating effects of AUY922 on PDGF-BB-induced VSMCs migration in vitro, we performed the Boyden chamber and scratch wound healing assays. To identify AUY922-mediated changes in the signaling pathway, the phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) 1/2 was analyzed by immunoblotting. The inhibitory effects of AUY922 on migration and proliferation ex vivo were tested using an aortic ring assay. AUY922 was not cytotoxic at concentrations up to 5 nM. PDGF-BB-induced VSMC proliferation, migration, and sprout outgrowth were significantly decreased by AUY922 in a dose-dependent manner. AUY922 significantly reduced the PDGF-BB-stimulated phosphorylation of Akt and ERK1/2. Furthermore, PD98059 (a selective ERK1/2 inhibitor) and LY294002 (a selective Akt inhibitor) decreased VSMC migration and proliferation by inhibiting phosphorylation of Akt and ERK1/2. Greater attenuation of PDGF-BB-induced cell viability and migration was observed upon treatment with PD98059 or LY294002 in combination with AUY922. AUY922 showed anti-proliferation and anti-migration effects towards PDGF-BB-induced VSMCs by regulating the phosphorylation of ERK1/2 and Akt. Thus, AUY922 is a candidate for the treatment of atherosclerosis and restenosis.

Regulation of vascular smooth muscle phenotype by cross-regulation of krüppel-like factors

  • Ha, Jung Min;Yun, Sung Ji;Jin, Seo Yeon;Lee, Hye Sun;Kim, Sun Ja;Shin, Hwa Kyoung;Bae, Sun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Regulation of vascular smooth muscle cell (VSMC) phenotype plays an essential role in many cardiovascular diseases. In the present study, we provide evidence that $kr{\ddot{u}}ppel$-like factor 8 (KLF8) is essential for tumor necrosis factor ${\alpha}$ ($TNF{\alpha}$)-induced phenotypic conversion of VSMC obtained from thoracic aorta from 4-week-old SD rats. Stimulation of the contractile phenotype of VSMCs with $TNF{\alpha}$ significantly reduced the VSMC marker gene expression and KLF8. The gene expression of KLF8 was blocked by $TNF{\alpha}$ stimulation in an ERK-dependent manner. The promoter region of KLF8 contained putative Sp1, KLF4, and $NF{\kappa}B$ binding sites. Myocardin significantly enhanced the promoter activity of KLF4 and KLF8. The ectopic expression of KLF4 strongly enhanced the promoter activity of KLF8. Moreover, silencing of Akt1 significantly attenuated the promoter activity of KLF8; conversely, the overexpression of Akt1 significantly enhanced the promoter activity of KLF8. The promoter activity of SMA, $SM22{\alpha}$, and KLF8 was significantly elevated in the contractile phenotype of VSMCs. The ectopic expression of KLF8 markedly enhanced the expression of SMA and $SM22{\alpha}$ concomitant with morphological changes. The overexpression of KLF8 stimulated the promoter activity of SMA. Stimulation of VSMCs with $TNF{\alpha}$ enhanced the expression of KLF5, and the promoter activity of KLF5 was markedly suppressed by KLF8 ectopic expression. Finally, the overexpression of KLF5 suppressed the promoter activity of SMA and $SM22{\alpha}$, thereby reduced the contractility in response to the stimulation of angiotensin II. These results suggest that cross-regulation of KLF family of transcription factors plays an essential role in the VSMC phenotype.

Diallyl Sulfides (DAS) and Diallyl Disulfides (DADS) Exhibit a Suppressive Effect on the Proliferation and Migration of Vascular Smooth Muscle

  • Kim, Min-Ju;Kwak, Jung-Hyun;Baek, Seung-Han;Yeo, Hyun-Yang;Song, Ju-Hyun;Cho, Bong-Jun;Kim, Oh-Yoen
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.137-142
    • /
    • 2010
  • Previous studies report that organo-sulfur compounds derived from garlic inhibited smooth muscle cell (SMC) proliferation and induced apoptosis of cancer cells. Recently, lipid-soluble compounds such as diallyl sulfides (DAS) and diallyl disulfides (DADS) have been reported to more effectively suppress tumor cell proliferation. However, there were few studies on the suppressive effects of lipid-soluble garlic sulfur compounds on the proliferation and migration of vascular smooth muscle cells (VSMC). Therefore, this study investigated the effect of DAS and DADS on VSMC proliferation/migration induced by oleic acid (OA), a principal fatty acid in circulating triglyceride of blood stream. Assays performed include a tetrazole (MTT) assay, a wound healing assay and a Western blots. VSMC proliferations were enhanced by OA in a dose-dependent manner at concentrations of $10{\sim}50\;{\mu}M$ and inhibited by DAS and DADS compared to non-treated control. OA-induced proliferations were also attenuated by DAS and DADS. OA-induced cell migrations were 2.5 times higher than non-treated control, and they were significantly attenuated by DAS (32% at $150\;{\mu}M$ and 50% at $200\;{\mu}M$) and DADS (40% at $150\;{\mu}M$ and 46% at $200\;{\mu}M$). OA-induced cell migration was also attenuated by PD98059 (ERK inhibitor), SB203580 (P38 inhibitor) and particularly by LY204002 (PI3K inhibitor) and SP600125 (JNK2 inhibitor). Additionally, Western blot assays showed that OA-induced JNK1/2-phosphorylation was down-regulated after treatment with DAS and DADS. In conclusion, the findings of our study support the idea that DAS and DADS may have a suppressive effect on the proliferation and migration of OA-induced VSMC and that this effect may be partly associated with PI3K and JNK2 pathways.

Role of zinc for calcification inhibitor protein in vascular smooth muscle cell plaque formation (혈관 플라그 형성 저해단백질에 대한 아연의 기능)

  • Shin, Mee-Young;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.49 no.1
    • /
    • pp.59-62
    • /
    • 2016
  • Purpose: Zinc, a biomineral present within and outside cells, manages various cellular mechanisms. In this study, we examined whether zinc was involved in vascular smooth muscle cell (VSMC) calcification via regulation of calcification inhibitor protein, osteopontin (OPN). Methods: Rat aorta cell line (A7r5 cells) and primary vascular smooth muscle cells (pVSMCs) from rat aorta were cultured with phosphate (1-5 mM) and zinc ($0-15{\mu}M$) as appropriate, along with osteoblasts (MC3T3-E1) as control. The cells were then stained for Ca and P deposition for calcification examination as well as osteopontin expression as calcification inhibitor protein was measured. Results: Both Ca and phosphate deposition increased as the addition of phosphate increased. In the same manner, the expression of osteopontin was upregulated as the addition of phosphate increased in both cell types. When zinc was added, Ca and P deposition decreased in VSMCs, while it increased in osteoblasts. Conclusion: The results imply that zinc may prevent VSMC calcification by stimulating calcification inhibitor protein OPN synthesis in VSMCs.

miR-15b induced by platelet-derived growth factor signaling is required for vascular smooth muscle cell proliferation

  • Kim, Sunghwan;Kang, Hara
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.550-554
    • /
    • 2013
  • The platelet-derived growth factor (PDGF) signaling pathway is essential for inducing a dedifferentiated state of vascular smooth muscle cells (VSMCs). Activation of PDGF inhibits smooth muscle cell (SMC)-specific gene expression and increases the rate of proliferation and migration, leading to dedifferentiation of VSMCs. Recently, microRNAs have been shown to play a critical role in the modulation of the VSMC phenotype in response to extracellular signals. However, little is known about microRNAs regulated by PDGF in VSMCs. Herein, we identify microRNA- 15b (miR-15b) as a mediator of VSMC phenotype regulation upon PDGF signaling. We demonstrate that miR-15b is induced by PDGF in pulmonary artery smooth muscle cells and is critical for PDGF-mediated repression of SMC-specific genes. In addition, we show that miR-15b promotes cell proliferation. These results indicate that PDGF signaling regulates SMC-specific gene expression and cell proliferation by modulating the expression of miR-15b to induce a dedifferentiated state in the VSMCs.

Losartan Inhibits Vascular Smooth Muscle Cell Proliferation through Activation of AMP-Activated Protein Kinase

  • Kim, Jung-Eun;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.299-304
    • /
    • 2010
  • Losartan is a selective angiotensin II (Ang II) type 1 ($AT_1$) receptor antagonist which inhibits vascular smooth muscle cells (VSMCs) contraction and proliferation. We hypothesized that losartan may prevent cell proliferation by activating AMP-activated protein kinase (AMPK) in VSMCs. VSMCs were treated with various concentrations of losartan. AMPK activation was measured by Western blot analysis and cell proliferation was measured by MTT assay and flowcytometry. Losartan dose- and time-dependently increased the phosphorylation of AMPK and its downstream target, acetyl-CoA carboxylase (ACC) in VSMCs. Losartan also significantly decreased the Ang II- or 15% FBS-induced VSMC proliferation by inhibiting the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. Compound C, a specific inhibitor of AMPK, or AMPK siRNA blocked the losartan-induced inhibition of cell proliferation and the $G_0/G_1$ cell cycle arrest. These data suggest that losartan-induced AMPK activation might attenuate Ang II-induced VSMC proliferation through the inhibition of cell cycle progression.

Aprotinin Inhibits Vascular Smooth Muscle Cell Inflammation and Proliferation via Induction of HO-1

  • Lee, Dong-Hyup;Choi, Hyoung-Chul;Lee, Kwang-Youn;Kang, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2009
  • Aprotinin is used clinically in cardiopulmonary bypass surgery to reduce transfusion requirements and the inflammatory response. The mechanism of action for the anti-inflammatory effects of aprotinin is still unclear. We examined our hypothesis whether inhibitory effects of aprotinin on cytokine-induced inducible nitric oxide synthase (iNOS) expression (IL-$l\beta$ plus TNF-$\alpha$), reactive oxygen species (ROS) generation, and vascular smooth muscle cell (VSMC) proliferation were due to HO-l induction in rat VSMCs. Aprotinin induced HO-l protein expression in a dose-dependent manner, which was potentiated during inflammatory condition. Aprotinin reduced cytokine mixture (CM)-induced iNOS expression in a dose dependent manner. Furthermore, aprotinin reduced CM-induced ROS generation, cell proliferation, and phosphorylation of JNK but not of P38 and ERK1/2 kinases. Aprotinin effects were reversed by pre-treatment with the HO-l inhibitor, tin protoporphyrin IX (SnPPIX). HO-l is therefore closely involved in inflammatory-stimulated VSMC proliferation through the regulation of ROS generation and JNK phosphorylation. Our results suggest a new molecular basis for aprotinin anti-inflammatory properties.