• Title/Summary/Keyword: VSI Chart

Search Result 35, Processing Time 0.02 seconds

Comparison of EWMA and CUSUM Charts with Variable Sampling Intervals for Monitoring Variance-Covariance Matrix

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.152-157
    • /
    • 2020
  • To monitor all elements simultaneously of variance-covariance matrix Σ of several correlated quality characteristics under multivariate normal process Np($\underline{\mu}$, Σ), multivariate exponentially weighted moving average (EWMA) chart and cumulative sum (CUSUM) chart are considered and compared. Numerical performances of the considered variable sampling interval (VSI) charts are evaluated using average run length (ARL), average time to signal (ATS), average number of switches (ANSW) to signal, and the probability of switch Pr(switch) between two sampling interval d1 and d2 where d1 < d2. For small or moderate changes of Σ, the performances of multivariate EWMA chart is approximately equivalent to that of multivariate CUSUM chart.

Comparison of the Efficiencies of Variable Sampling Intervals Charts for Simultaneous Monitoring the means of multivariate Quality Variables

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • When the linear correlation of the quality variables are considerably high, multivariate control charts may be a more effective way than univariate charts which operate quality variables and process parameters individually. Performances and efficiencies of the multivariate control charts under multivariate normal process has been considered. Some numerical results are presented under small scale of the shifts in the process to see the improvement of the efficiency of EWMA chart and CUSUM chart, which use past quality information, comparing to Shewart chart, which do not use quality information. We can know that the decision of the optimum value of the smoothing constant in EWMA structure or the reference value in CUSUM structure are very important whether we adopt combine-accumulate technique or accumulate-combine technique under the given condition of process.

Development of Integrated Variable Sampling Interval Engineering Process Control & Statistical Process Control System (가변 샘플링간격 EPC/SPC 결합시스템의 개발)

  • Lee, Seong-Jae;Seo, Sun-Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.723-729
    • /
    • 2005
  • Traditional statistical process control(SPC) applied to discrete part industry in the form of control charts can look for and eliminate assignable causes by process monitoring. On the other hand, engineering process control(EPC) applied to the process industry in the form of feedback control can maintain the process output on the target by continual adjustment of input variable. This study presents controlling and monitoring rules adopted variable sampling interval(VSI) to change sampling intervals in a predetermined fashion on the predicted process levels for integrated EPC and SPC systems. Twelve rules classified by EPC schemes(MMSE, constrained PI, bounded or deadband adjustment policy) and type of sampling interval combined with EWMA chart of SPC are proposed under IMA(1,1) disturbance model and zero-order (responsive) dynamic system. The properties of twelve control rules under three patterns of process change(sudden shift, drift and random shift) are evaluated and discussed through simulation and control rules for integrated VSI EPC and SPC systems are recommended.

  • PDF

Switching properties of bivariate Shewhart control charts for monitoring the covariance matrix

  • Gwon, Hyeon Jin;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1593-1600
    • /
    • 2015
  • A control chart is very useful in monitoring various production process. There are many situations in which the simultaneous control of two or more related quality variables is necessary. We construct bivariate Shewhart control charts based on the trace of the product of the estimated variance-covariance matrix and the inverse of the in-control matrix and investigate the properties of bivariate Shewart control charts with VSI procedure for monitoring covariance matrix in term of ATS (Average time to signal) and ANSW (Average number of switch) and probability of switch, ASI (Average sampling interval). Numerical results show that ATS is smaller than ARL. From examining the properties of switching in changing covariances and variances in ${\Sigma}$, ANSW values show that it does not switch frequently and does not matter to use VSI procedure.

Development of Integrated Variable Sampling Interval EngineeringProcess Control & Statistical Process Control System (가변 샘플링간격 EPC/SPC 결합시스템의 개발)

  • Lee, Sung-Jae;Seo, Sun-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.210-218
    • /
    • 2006
  • Traditional statistical process control (SPC) applied to discrete part industry in the form of control charts can look for and eliminate assignable causes by process monitoring. On the other hand, engineering process control (EPC) applied to the process industry in the form of feedback control can maintain the process output on the target by continual adjustment of input variable. This study presents controlling and monitoring rules adopted by variable sampling interval (VSI) to change sampling intervals in a predetermined fashion on the predicted process levels under integrated EPC and SPC systems. Twelve rules classified by EPC schemes(MMSE, constrained PI, bounded or deadband adjustment policy) and type of sampling interval combined with EWMA chart of SPC are proposed under IMA (1,1) disturbance model and zero-order (responsive) dynamic system. Properties of twelve control rules under three patterns of process change (sudden shift, drift and random shift) are evaluated and discussed through simulation and control rules for integrated VSI EPC and SPC systems are recommended.