• Title/Summary/Keyword: VSH

Search Result 12, Processing Time 0.014 seconds

SOLAR CYCLE VARIATION OF UPPER THERMOSPHERIC TEMPERATURE OVER KING SEJONG STATION, ANTARCTICA

  • Chung, Jong-Kyun;Won, Young-In;Kim, Yong-Ha;Lee, Bang-Yong;Kim, Jhoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.241-248
    • /
    • 2000
  • A groung Fabry-Perot interferometer has been used to measure atomic oxygen nightglow (OI 630.0nm) from the thermosphere (about 250km) at King Sejong station (KSS, geographic: $62.22^{\circ}$S, $301.25^{\circ}$E; geomagnetic: $50.65^{\circ}$S, $7.51^{\circ}$E), Antarctica. While numerous studies of the thermosphere have been performed on high latitude using ground-based Fabry-Perot interferometers, the thermospheric measurements in the Southern Hemisphere are relatively new and sparse. Therefore, the nightglow measurements at KSS play an important role in extending the thermospheric studies to the Southern Hemisphere. In this study, we investigated the effects of the geomagnetic and solar activities on the thermospheric neutral temperatures that have been observed at KSS in 1989 and 1997. The measured average temperatures are 1400K in 1989 and 800K in 1997, reflecting the influence of the solar activity. The measurements were compared with empirical models, MSIS-86 and semi-empirical model, VSH.

  • PDF

A STUDY ON TEMPERATURE VARIATION OF THE UPPER THERMOSPHERE IN THE HIGH LATITUDE THROUGH THE ANALYSIS OF 6300 $\AA$ AIRGLOW DATA (6300 $\AA$ 대기광 자료 분석을 통한 고위도 열권 상부에서의 온도 변화)

  • 정종균;김용하;원영인;이방용
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.94-108
    • /
    • 1997
  • The temperature of the upper thermosphere is generally varied with the solar activity, and largely with geomagnetic activity in the high latitude. The data analyzed in this study are acquired at two ground stations, Thule Air Base($76,5{deg} N, 68.4{deg} W, A = 86{deg}$) and $S{psi}ndre Str{psi}mfjord (67.0{deg} N, 50.9{deg} W, A = 74{deg}$), Greenland. Both stations are located in the high latitude not only geographically but also geomagnetically. The terrestrial night glow at 6300 ${angs}$ from atomic oxygen has been observed from the two ground-based Fabry-Perot interferometers, during periods of 1986~1991 in Thule Air Base and 1986~1994 in $S{psi}ndre Str{psi}mfjord$. Some features noted in this study are as follows: (1) The correlation between the solar activity and the measured thermospheric temperature is highest in the case of $3{leq}Kp{leq}4$ in Thule, and increases with the geomagnetic activity in $S{psi}ndre Str{psi}mfjord$. (2) The measured temperatures at Thule is generally higher than those at $S{psi}ndre Str{psi}mfjord$, but the latter shows steeper slope with the solar activity. (3) The harmonic analysis shows that the diurnal variation(24hrs) is the main feature of the daily temperature variation with a temperature peak at about 13-14 LT (LT=UT-4). However, the semi-diurnal variation is evident during the period of weak solar activity. (4) Generally the predicted temperatures from both MSIS86 and VSH models are lower than the measured temperature, and this discrepancy grows as the solar activity increases. Therefore, we urge modelers to develope a new thermospheric model utilizing broader sets of measurements, especially for high solar activity.

  • PDF