• Title/Summary/Keyword: VS-BMA

Search Result 2, Processing Time 0.019 seconds

Effect of Carbon Black Concentration and Monomer Compositional Ratio on the Flow Behavior of Copoly(styrene/butyl methacrylate) Particles (카본블랙의 농도 및 단량체 구성비에 따른 스티렌-부틸메타크릴레이트 공중합체 입자의 유동성)

  • Park, Moon-Soo;Moon, Ji-Yeon
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • We measured shear viscosity of copoly(styrene(St)/butyl methacrylate(BMA)) (co-PSB) particles, with a capillary rheometer at $170^{\circ}C$, prepared by suspension polymerization with hydrophobic silica as a stabilizer. co-PSB particles with the weight average molecular weights of lower than 74,800 g/mol displayed a Newtonian behavior at low shear rates. With the weight average molecular weight exceeding 136,800 g/mol, co-PSB particles showed shear thinning against shear rates and the absolute value of the slopes between shear viscosity vs. shear rate increased. When the ratio between St and BMA changed from 7/3 to 5/5 to 3/7, shear viscosity and glass transition decreased despite similar molecular weights. When the ratio was 1/9, it showed a large increase in initial shear viscosity despite reduced glass transition. Shear viscosity exhibited an increase in proportion to carbon black concentration. The effect of carbon black concentration on the shear viscosity of co-PSB composites was less pronounced compared to varying molecular weights and/or compositional ratio.

Multi-Level Motion Estimation Algorithm Using Motion Information in Blocks (블록 내의 움직임 정보를 이용한 다단계 움직임 예측 알고리즘)

  • Heak Bong Kwon
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.259-266
    • /
    • 2003
  • In this paper, we propose a multi-level block matching algorithm using motion information in blocks. In the proposed algorithm, the block-level is decided by the motion degree in the block before motion searching procedure, and then adequate motion searching performs according to the block-level. This improves computational efficiency by eliminating the unnecessary searching Process in no motion or low motion regions, and brings more accurate estimation results by deepening motion searching Process in high motion regions. Simulation results show that the proposed algorithm brings the lower estimation error about 20% MSE reduction with the fewer blocks pet frame and the operation number was reduced to 56% compared to TSSA and 98% compared to FS -BMA with constant block size.

  • PDF