• 제목/요약/키워드: VS mechanism

검색결과 286건 처리시간 0.03초

Addition of interleukin-6 to mouse embryo culture increases blastocyst cell number and influences the inner cell mass to trophectoderm ratio

  • Kelley, Rebecca L;Gardner, David K
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제44권3호
    • /
    • pp.119-125
    • /
    • 2017
  • Objective: In vitro culture of preimplantation embryos is improved by grouping embryos together in a drop of media. Individually cultured embryos are deprived of paracrine factors; with this in mind, we investigated whether the addition of a single embryo-secreted factor, interleukin-6 (IL-6), could improve the development of individually cultured embryos. Methods: Mouse embryos were cultured individually in $2{\mu}L$ of G1/G2 media in 5% oxygen and supplemented with a range of doses of recombinant mouse or human IL-6. Results: Mouse IL-6 increased hatching at doses of 0.01 and 10 ng/mL compared to the control (93% and 93% vs. 78%, p< 0.05) and increased the total number of cells at a dose of 0.1 ng/mL compared to the control ($101.95{\pm}3.36$ vs. $91.31{\pm}3.33$, p< 0.05). In contrast, the highest dose of 100 ng/mL reduced the total number of cells ($79.86{\pm}3.29$, p< 0.05). Supplementation with human IL-6 had a different effect, with no change in hatching or total cell numbers, but an increase in the percentage of inner cell mass per embryo at doses of 0.1, 1, and 100 ng/mL compared to the control ($22.9%{\pm}1.1%$, $23.3%{\pm}1.1%$, and $23.1%{\pm}1.1%$ vs. $19.5%{\pm}1.0%$, p< 0.05). Conclusion: These data show that IL-6 improved mouse embryo development when cultured individually in complex media; however, an excess of IL-6 may be detrimental. Additionally, these data indicate that there is some cross-species benefit of human IL-6 for mouse embryos, but possibly through a different mechanism than for mouse IL-6.

Inhibition of L-type Ca2+ current by ginsenoside Rd in rat ventricular myocytes

  • Lu, Cheng;Sun, Zhijun;Wang, Line
    • Journal of Ginseng Research
    • /
    • 제39권2호
    • /
    • pp.169-177
    • /
    • 2015
  • Background: Ginsenoside Rd (GSRd), one of the most abundant ingredients of Panax ginseng, protects the heart via multiple mechanisms including the inhibition of $Ca^{2+}$ influx.We intended to explore the effects of GSRd on L-type $Ca^{2+}$ current ($I_{Ca,L}$) and define the mechanism of the suppression of $I_{Ca,L}$ by GSRd. Methods: Perforated-patch recording and whole-cell voltage clamp techniques were applied in isolated rat ventricular myocytes. Results: (1) GSRd reduced $I_{Ca,L}$ peak amplitude in a concentration-dependent manner [half-maximal inhibitory concentration $(IC_{50})=32.4{\pm}7.1{\mu}mol/L$] and up-shifted the current-voltage (I-V) curve. (2) GSRd ($30{\mu}mol/L$) significantly changed the steady-state activation curve of $I_{Ca,L}$ ($V_{0.5}:-19.12{\pm}0.68$ vs. $-6.26{\pm}0.38mV$; n = 5, p < 0.05) and slowed down the recovery of $I_{Ca,L}$ from inactivation [the time content (${\zeta}$) from 91 ms to 136 ms, n = 5, p < 0.01]. (3) A more significant inhibitive effect of GSRd ($100{\mu}mol/L$) was identified in perforated-patch recording when compared with whole-cell recording [$65.7{\pm}3.2%$ (n = 10) vs. $31.4{\pm}5.2%$ (n = 5), p < 0.01]. (4) Pertussis toxin ($G_i$ protein inhibitor) completely abolished the $I_{Ca,L}$ inhibition induced by GSRd. There was a significant difference in inhibition potency between the two cyclic adenosine monophosphate elevating agents (isoprenaline and forskolin) prestimulation [$55{\pm}7.8%$ (n = 5) vs. $17.2{\pm}3.5%$ (n = 5), p < 0.01]. (5) 1H-[1,2,4]Oxadiazolo[4,3-a]-quinoxalin-1-one (a guanylate cyclase inhibitor) and N-acetyl-$\small{L}$-cysteine (a nitric oxide scavenger) partly recovered the $I_{Ca,L}$ inhibition induced by GSRd. (6) Phorbol-12-myristate-13-acetate (a protein kinase C activator) and GF109203X (a protein kinase C inhibitor) did not contribute to the inhibition of GSRd. Conclusion: These findings suggest that GSRd could inhibit $I_{Ca,L}$ through pertussis toxin-sensitive G protein ($G_i$) and a nitric oxide-cyclic guanosine monophosphate-dependent mechanism.

Modulation of Inflammatory Cytokines and Islet Morphology as Therapeutic Mechanisms of Basella alba in Streptozotocin-Induced Diabetic Rats

  • Arokoyo, Dennis S.;Oyeyipo, Ibukun P.;Du Plessis, Stefan S.;Chegou, Novel N.;Aboua, Yapo G.
    • Toxicological Research
    • /
    • 제34권4호
    • /
    • pp.325-332
    • /
    • 2018
  • The mechanism of the previously reported antidiabetic effect of Basella alba is unknown. This study investigated the role of B. alba aqueous leaf extract in the modulation of inflammatory cytokines and islet morphology in streptozotocin-induced diabetic rats. Forty male Wistar rats, between 8 and 10 weeks old, were randomly divided into four groups (n = 10) and administered the following treatments: Healthy control (H-c) and Diabetic control (D-c) animals received normal saline 0.5 mL/100 g body weight daily, while Healthy Treatment (H-Ba) and Diabetic Treatment (D-Ba) rats received the plant extract 200 mg/kg body weight daily. All treatments were administered by oral gavage. Diabetes was induced in D-c and D-Ba rats by a single intraperitoneal injection of streptozotocin (55 mg/kg body). The body weight and fasting blood sugar (FBS) levels were recorded every week for 4 weeks, after which the rats were euthanized and samples collected for further analysis. After the experiment, FBS level was significantly reduced (p < 0.0001) in rats in the D-Ba group, but increased (p < 0.001) in rats in the D-c group. The absolute (H-c and H-Ba vs D-c, p < 0.05) and relative (D-Ba vs H-c, p < 0.05; D-Ba vs H-Ba, p < 0.005) weights of the pancreases were significantly higher after the experiment. The rats in the D-c group had significantly higher levels of serum interleukin-$1{\beta}$ (p < 0.001 vs H-c; p < 0.05 vs H-Ba and D-Ba) and monocyte chemotactic protein-1 (p < 0.0001), but lower levels of interleukin-10 (p < 0.05) in comparison with the other groups. Histopathological examination revealed severe interstitial congestion, reduced islet area (p < 0.0001), and increased islet cell density in the D-c group compared with those in the D-Ba group. From these findings, it was concluded that the aqueous extract of B. alba stimulates the recovery of beta-islet morphology in streptozotocininduced diabetic rats by modulating the peripheral production of inflammatory cytokines.

소비자의 유념성과 강박구매 (Consumers' Mindfulness and Compulsive Buying)

  • 한웅희
    • 유통과학연구
    • /
    • 제12권12호
    • /
    • pp.93-100
    • /
    • 2014
  • Purpose - This study investigated the effect of the negative affect on compulsive buying and the interaction effect of the negative affect depending on the level of mindfulness. Compulsive buying is defined as chronic, repetitive purchasing that becomes an overlearned and automatic way to cope with negative feelings, and compulsive buyers may be particularly susceptible to cognitive narrowing when shopping. Mindfulness may be defined as a coordinative regulatory process to increase the level of attention by recognizing the present experiences non-judgmentally. Hence, mindfulness can be related with negative psychological results such as general mental distress, especially compulsive buying. The purpose of the current study is to examine the relationship between compulsive buying and mindfulness. In another words, this study investigated the effect of the internal regulatory mechanism (that is, mindfulness) on the mental disorder resulting from negative affect in the area of consumption (that is, compulsive buying). Research design, data, and methodology - One hundred and twenty-five college students were recruited for this study. The subjects were classified into two groups according to the degree of the negative affect (High Negative Affect Group vs. Low Negative Affect Group) by the mean value of negative affect (=2.47). The subjects were classified into two other groups according to the degree of mindfulness (High Mindfulness Group vs. Low Mindfulness Group) by the mean value of mindfulness (= 3.47). To analyze the effect of negative affect on compulsive buying, the degree of compulsive buying of the High and Low Negative Affect Groups were compared. To examine the moderating effect of mindfulness by using factorial design, the interaction effect of the negative affect (High vs. Low) and the mindfulness (High vs. Low) were analyzed. Results - The degree of the compulsive buying was higher when the degree of the negative affect was higher than lower (3.06High Negative Affect Group vs. 2.87Low Negative Affect Group, p=.014). The difference in the degree of the compulsive buying was larger when the degree of the mindfulness was lower than higher. In other words, the interaction effect of the negative affect and the mindfulness on the compulsive buying could be found (F(1,124)=10.098, p<.01). Conclusions - The results of the current study showed that the compulsive buying is influenced by the negative affect and that the effect of the negative affect on the compulsive buying varies depending on the level of the mindfulness. These results can be interpreted to imply that consumers who are in a state of high mindfulness pay attention to every minute of experience and activate the coordinatory function and that, eventually, habitual and reflective responses such as compulsive buying are restricted. It is concluded that consumers' mindfulness can facilitate the self-regulatory responses and alleviate the influence of negative affect on compulsive buying. Based on these results, the theoretical and practical implications of this research were discussed and the limitations and future research areas were suggested.

Effect of Korea red ginseng on nonalcoholic fatty liver disease: an association of gut microbiota with liver function

  • Hong, Ji Taek;Lee, Min-Jung;Yoon, Sang Jun;Shin, Seok Pyo;Bang, Chang Seok;Baik, Gwang Ho;Kim, Dong Joon;Youn, Gi Soo;Shin, Min Jea;Ham, Young Lim;Suk, Ki Tae;Kim, Bong-Soo
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.316-324
    • /
    • 2021
  • Background: Korea Red Ginseng (KRG) has been used as remedies with hepato-protective effects in liver-related condition. Microbiota related gut-liver axis plays key roles in the pathogenesis of chronic liver disease. We evaluated the effect of KRG on gut-liver axis in patients with nonalcoholic statohepatitis by the modulation of gut-microbiota. Methods: A total of 94 patients (KRG: 45 and placebo: 49) were prospectively randomized to receive KRG (2,000 mg/day, ginsenoside Rg1+Rb1+Rg3 4.5mg/g) or placebo during 30 days. Liver function test, cytokeraton 18, and fatigue score were measured. Gut microbiota was analyzed by MiSeq systems based on 16S rRNA genes. Results: In KRG group, the mean levels (before vs. after) of aspartate aminotransferase (53 ± 19 vs. 45 ± 23 IU/L), alanine aminotransferase (75 ± 40 vs. 64 ± 39 IU/L) and fatigue score (33 ± 13 vs. 26 ± 13) were improved (p < 0.05). In placebo group, only fatigue score (34 ± 13 vs. 31 ± 15) was ameliorated (p < 0.05). The changes of phyla were not statistically significant on both groups. In KRG group, increased abundance of Lactobacillus was related with improved alanine aminotransferase level and increased abundance of Clostridium and Intestinibacter was associated with no improvement after KRG supplementation. In placebo group, increased abundance of Lachnospiraceae could be related with aggravation of liver enzyme (p < 0.05). Conclusion: KRG effectively improved liver enzymes and fatigue score by modulating gut-microbiota in patients with fatty liver disease. Further studies are needed to understand the mechanism of improvement of nonalcoholic steatohepatitis. ClnicalTrials.gov: NCT03945123 (www.ClinicalTrials.gov).

Leaving-Group Substituent Controls Reactivity and Reaction Mechanism in Aminolysis of Phenyl Y-Substituted-Phenyl Carbonates

  • Kang, Ji-Sun;Song, Yoon-Ju;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2023-2028
    • /
    • 2013
  • A kinetic study is reported for the nucleophilic substitution reactions of phenyl Y-substituted-phenyl carbonates (5a-5k) with piperidine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [piperidine] for the reactions of substrates possessing a strong electron-withdrawing group (EWG) in the leaving group (i.e., 5a-5i) are linear and pass through the origin. In contrast, the plots for the reactions of substrates bearing a weak EWG or no substituent (i.e., 5j or 5k) curve upward, indicating that the electronic nature of the substituent Y in the leaving group governs the reaction mechanism. Thus, it has been suggested that the reactions of 5a-5i proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate (i.e., $T^{\pm}$) while those of 5j and 5k proceed through a stepwise mechanism with two intermediates (i.e., $T^{\pm}$ and its deprotonated form $T^-$). The slope of the Br${\o}$nsted-type plot for the second-order rate constants (i.e., $k_N$ or $Kk_2$) changes from -0.41 to -1.89 as the leaving-group basicity increases, indicating that a change in the rate-determining step (RDS) occurs. The reactions of 5a-5k with piperidine result in larger $k_1$ values than the corresponding reactions with ethylamine.

Product-Rate Correlations for Solvolyses of 2,4-Dimethoxybenzenesulfonyl Chloride

  • Kim, Soo Ryeon;Choi, Hojune;Park, Jong Keun;Koo, In Sun;Koh, Han Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.51-56
    • /
    • 2014
  • The solvolysis rate constants of 2,4-dimethoxybenzenesulfonyl chloride (1) in 30 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and $Y_{Cl}$ solvent ionizing scale, with sensitivity values of $0.93{\pm}0.14$ and $0.65{\pm}0.06$ for l and m, respectively. These l and m values can be considered to support a $S_N2$ reaction pathway. The activation enthalpies (${\Delta}H^{\neq}$) were 12.4 to $14.6kcal{\cdot}mol^{-1}$ and the activation entropies (${\Delta}S^{\neq}$) were -15.5 to -$32.3kcal{\cdot}mol^{-1}{\cdot}K^{-1}$, which is consistent with the proposed bimolecular reaction mechanism. The solvent kinetic isotope effects (SKIE) were 1.74 to 1.86, which is also in accord with the $S_N2$ mechanism and was possibly assisted using a general-base catalysis. The values of product selectivity (S) for solvolyses of 1 in alcohol/water mixtures was 0.57 to 6.5, which is also consistent with the proposed bimolecular reaction mechanism. Third-order rate constants, $k_{ww}$ and $k_{aa}$, were calculated from the rate constants ($k_{obs}$), together with $k_{aw}$ and $k_{wa}$ calculated from the intercept and slope of the plot of 1/S vs. [water]/[alcohol]. The calculated rate constants, $k_{calc}$ ($k_{ww}$, $k_{aw}$, $k_{wa}$ and $k_{aa}$), are in satisfactory agreement with the experimental values, supporting the stoichiometric solvation effect analysis.

Nucleophilic Substitution Reactions of Y-Substituted-Phenyl Benzoates with Potassium Ethoxide in Anhydrous Ethanol: Reaction Mechanism and Role of K+ Ion

  • Kim, Song-I;Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.177-181
    • /
    • 2014
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the reactions of Y-substituted-phenyl benzoates (5a-j) with potassium ethoxide (EtOK) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [EtOK] curve upward regardless of the electronic nature of the substituent Y in the leaving group. Dissection of $k_{obsd}$ into the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOK (i.e., $k_{EtO^-}$ and $k_{EtOK}$, respectively) has revealed that the ion-paired EtOK is more reactive than the dissociated $EtO^-$. The Br${\phi}$nsted-type plots for the reactions with the dissociated $EtO^-$ and ion-paired EtOK exhibit highly scattered points with ${\beta}_{lg}$ = -$0.5{\pm}0.1$. The Hammett plots correlated with ${\sigma}^o$ constants result in excellent linear correlations, indicating that no negative charge develops on the O atom of the leaving Y-substituted-phenoxide ion in transition state. Thus, it has been concluded that the reactions with the dissociated $EtO^-$ and ion-paired EtOK proceed through a stepwise mechanism, in which departure of the leaving group occurs after the RDS, and that $K^+$ ion catalyzes the reactions by increasing the electrophilicity of the reaction center through a four-membered cyclic TS structure.

Marked Difference in Solvation Effects and Mechanism between Solvolyses of Substituted Acetylchloride with Alkyl Groups and with Aromatic Rigns in Aqueous Fluorinated Alcohol and in 2,2,2-Trifluoroethanol-Ethanol Solvent Systems

  • Oh, Yung-Hee;Jang, Gyeong-Gu;Lim, Gyi-Taek;Ryu, Zoon-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1089-1096
    • /
    • 2002
  • Solvolyses rate constants of trimethylacetyl chloride (2), isobutyryl chloride (3), diphenylacetyl chloride (4) and p-methoxyphenylacetyl chloride (5) in 2,2,2-trifluoroethanol (TFE)-water, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-water and TFE-et hanol solvent systems at $10^{\circ}C$ are determined by a conductimetric method. Kinetic solvent isotope effects (KSIE) are reported from additional kinetic data for methanolyses of various substituted acetylchlorides in methanol According to the results of those reactions analyzed in terms of rate-rate profiles,extended Grunwald-Winstein type correlations, application of a third order reaction model based a general base catalyzed (GBC) and KSIE values. Regardless of the kind of neighboring groups (CH3- or Ph-groups) of reaction center, for aqueous fluorinated alcohol systems, solvolyses of 2, 3, 4, and 5 were exposed to the reaction with the same mechanism (a loose SN2 type mechanism by electrophilic solvation) controlled by a similarity of solvation of the transition sate (TS). Whereas, for TFE-ethanol solvent systems, the reactivity depended on whether substituted acetyl chloride have aromatic rings (Ph-) or alkyl groups (CH3-); the solvations by the predominant stoichiometric effect (third order reaction mechanism by GBC and/or by push-pull type) for Ph- groups (4 and 5) and the same solvation effects as those shown in TFE-water solvent systems for CH3- groups (2 and 3) were exhibited Such phenomena can be interpreted as having relevance to the inductive effect ( $\sigmaI)$ of substituted groups; the plot of log (KSIE) vs. ${\sigma}I$ parameter give an acceptable the linear correlation with r = 0.970 (slope = 0.44 $\pm$ 0.06, n = 5).

Cut-Through versus Cut-Out: No Easy Way to Predict How Single Lag Screw Design Cephalomedullary Nails Used for Intertrochanteric Hip Fractures Will Fail?

  • Garrett W. Esper;Nina D. Fisher;Utkarsh Anil;Abhishek Ganta;Sanjit R. Konda;Kenneth A. Egol
    • Hip & pelvis
    • /
    • 제35권3호
    • /
    • pp.175-182
    • /
    • 2023
  • Purpose: This study aims to compare patients in whom fixation failure occurred via cut-out (CO) or cut-through (CT) in order to determine patient factors and radiographic parameters that may be predictive of each mechanism. Materials and Methods: This retrospective cohort study includes 18 patients with intertrochanteric (IT) hip fractures (AO/OTA classification 31A1.3) who underwent treatment using a single lag screw design intramedullary nail in whom fixation failure occurred within one year. All patients were reviewed for demographics and radiographic parameters including tip-to-apex distance (TAD), posteromedial calcar continuity, neck-shaft angle, lateral wall thickness, and others. Patients were grouped into cohorts based on the mechanism of failure, either lag screw CO or CT, and a comparison was performed. Results: No differences in demographics, injury details, fracture classifications, or radiographic parameters were observed between CO/CT cohorts. Of note, a similar rate of post-reduction TAD>25 mm (P=0.936) was observed between groups. A higher rate of DEXA (dual energy X-ray absorptiometry) confirmed osteoporosis (25.0% vs. 60.0%) was observed in the CT group, but without significance. Conclusion: The mechanism of CT failure during intramedullary nail fixation of an IT fracture did not show an association with clinical data including patient demographics, reduction accuracy, or radiographic parameters. As reported in previous biomechanical studies, the main predictive factor for patients in whom early failure might occur via the CT effect mechanism may be related to bone quality; however, conduct of larger studies will be required in order to determine whether there is a difference in bone quality.