• 제목/요약/키워드: VOP detection

검색결과 7건 처리시간 0.017초

청각 주파수 응답에 기반한 자동 모음 개시 지점 탐지 (Automatic Vowel Onset Point Detection Based on Auditory Frequency Response)

  • 장한;김학태;정길도
    • 한국산학기술학회논문지
    • /
    • 제13권1호
    • /
    • pp.333-342
    • /
    • 2012
  • 이 논문에서는 인간 청각 시스템에 기반한 모음 개시 지점 (VOP) 탐지 방법을 제시하였다. 이 방법을 통해 '지각의' 주파수 범위, 즉 선형 음향 주파수에서의 Mel Scale을 보여준 후 일련의 삼각 Mel-weighted Filter Bank를 만들어 인간의 청각 시스템에서 대역 필터링 기능을 시뮬레이션하였다. 이러한 비선형 임계 대역 Filter Bank는 데이터 차원수를 크게 감소시키고 비선형적으로 간격을 둔 Mel 스펙트럼에서 더욱 효과적으로 포먼트를 생성하기 위해 조파들의 영향을 제거해준다. Mel 스펙트럼의 첨두 에너지 합은 각 프레임의 특징으로 추출하고 에너지 진폭이 급격히 상승하기 시작할 때의 특성은 Gabor 윈도우를 사용하여 VOP로 탐지한다. 실험 결과를 통해서 다른 종류의 자음들과 연결된 12개의 모음들을 포함하는 한 단어 데이터베이스에 대한 제안된 방법의 평균 정확도는 단시간 에너지와 zero-crossing 비율에 기반을 둔 다른 모음 탐지 방법들보다 높은 72.73% 이상임을 확인하였다.

비디오 시퀸스에서 움직임 객체 분할과 VOP 추출을 위한 강력한 알고리즘 (A Robust Algorithm for Moving Object Segmentation and VOP Extraction in Video Sequences)

  • 김준기;이호석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권4호
    • /
    • pp.430-441
    • /
    • 2002
  • 비디오 객체 분할은 MPEG-4와 같은 객체기반 비디오 코딩을 위한 중요한 구성 요소이다. 본논문은 비디오 시퀸스에서 움직임 객체 분할을 위한 새로운 알고리즘과 VOP(Video Object Plane)추출 방법을 소개한다. 본 논문의 핵심은 시간적으로 변하는 움직임 객체 에지와 공간적 객체 에지 검출 결과를 효율적으로 조합하여 정확한 객체 경계를 추출하는 것이다. 이후 추출된 에지를 통하여 VOP를 생성한다. 본 알고리즘은 첫 번째 프레임을 기준영상으로 설정한 후 두 개의 연속된 프레임 사이의 움직임 픽셀 차이 값으로부터 시작된다. 차이영상을 추출한 후 차이영상에 Canny 에지 연산과 수리형태 녹임 연산(erosion)을 적용하고, 다음 프레임의 영상에 Canny 에지 연산과 수리형태 녹임 연산을 적용하여 두 프레임 사이의 에지 비교를 통하여 정확한 움직임 객체 경계를 추출한다. 이 과정에서 수리형태학 녹임 연산은 잘못된 객체 에지의 검출을 방지하는 작용을 한다. 두 영상 사이의 정확한 움직임 객체 에지(moving object edge)는 에지 크기를 조절하여 생성한다. 본 알고리즘은 픽셀 범위까지 고려한 정화한 객체의 경계를 얻음으로서 매우 쉬운 구현과 빠른 객체 추출을 보였다.

실시간 고압축 MPEG-4 비디오 코딩을 위한 전처리 시스템 (Preprocessing System for Real-time and High Compression MPEG-4 Video Coding)

  • 김준기;홍성수;이호석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제9권5호
    • /
    • pp.509-520
    • /
    • 2003
  • 본 논문에서는 MPEG-4 비디오 부호화와 복호화 시스템의 실용성과 고효율의 압축을 위한 새로운 알고리즘을 개발하였다. MPEG-4 비디오 그룹에서는 실험과 경험을 통하여 비디오 검증 모델인 VM(Verification Model)을 개발하였다 또한 MPEG-4 표준화 과정을 통하여 ISO/IEC 14496-2 표준 문서와 VM에 기반하여 다양한 참조 소프트웨어가 개발되었다. MS-FDAM은 MPEG-4 참조 소프트웨어로서 표준 부호화와 복호화로 개발되었으나 고효율의 압축과 실용성에 제한이 있다. 이에 본 논문은 기본 MS-FDAM모델에 내용 기반 비디오 코딩의 핵심인 VOP 추출 알고리즘, 실시간 입력 시스템, 압축율을 높일 수 있는 움직임 감지 알고리즘을 추가하여 최대 180:1의 압축율을 보여주는 실시간 고압축 MPEG-4 시스템을 개발하였다.

실시간 고압축 MPEG-4 부호화를 위한 비디오 객체 분할과 프레임 전처리 (Video object segmentation and frame preprocessing for real-time and high compression MPEG-4 encoding)

  • 김준기;이호석
    • 한국통신학회논문지
    • /
    • 제28권2C호
    • /
    • pp.147-161
    • /
    • 2003
  • 비디오 객체 분할(Video Object Segmentation)은 MPEG-4 부호화의 핵심기술로 실시간 요구사항을 위해 빠르고 정확하여야 한다. 그러나 대부분의 존재하는 알고리즘은 계산량이 많으며 실시간 응용을 위해 적합하지 않다. 또한 이전 MPEG-4 VM(Verification Model) 기본 모델은 MPEG-4 부호화 처리를 위한 기본 알고리즘을 제공하였으나 실시간 요구사항을 위한 카메라 입력 시스템, 실용적인 소프트웨어 개발, 비디오 객체 분할 그리고 압축효율에 많은 제한이 있다. 이에 본 논문은 기본 MPEG-4 VM모델에 내용 기반 비디오 코딩의 핵심인 VOP 추출알고리즘, 실시간 카메라 입력 시스템, 압축율을 높일 수 있는 움직임 감지 알고리즘을 추가하여 최대 180:1의 압축율을 보여주는 실시간 고압축 MPEG-4 전처리 시스템을 개발하였다.

비디오 객체 생성을 위한 자동 영상 분할 방법 (An Automatic Segmentation Method for Video Object Plane Generation)

  • 최재각;김문철;이명호;안치득;김성대
    • 방송공학회논문지
    • /
    • 제2권2호
    • /
    • pp.146-155
    • /
    • 1997
  • 본 논문은 MPEG-4와 같이 객체 및 내용 기반 영상 부호화에 필요한 동영상의 자동 영역 분할 알고리즘을 제안한다. 통계적 가설 검증(statistical hypothesis test)을 사용하여 영상 시퀀스내에 포함된 비디오 객체들(video objects)을 움직임 물체(moving objects)와 배경 (background)으로 자동 분할하는 새로운 영상 분할 알고리즘을 제안한다. 기존 방법들이 두 개의 연속된 영상을 사용하는 반면에, 제안된 방법은 3개의 연속된 영상을 사용하여, 2개의 차영상의 평균값을 비교하여 가설검증을 행함으로써 잡음에 강한 특성을 나타낸다. 그리고 제안된 방법은 기존 방법과는 달리 참분산(true variance)을 사전에 알고 있을 필요가 없는 장점을 갖고 있다[18]. 또한 시간정보만을 이용한 변화 검출 방법의 문제점인 불규칙하고 부정확한 영역의 경계를 공간정보를 이용하여 보정하는 새로운 방법을 제안한다. 시험 결과에서 주어진 것처럼 제안된 시공간정보를 이용한 영상 분할 알고리즘이 시각적으로 의미있는 분할 결과를 제공함을 알 수 있고, 정확한 영역 경계를 추출할 수 있기 때문에 MPEG-4와 같은 객체 기반 영상 부호화에 적용할 경우에 영역 경계에서 상당히 우수한 재생 화질을 얻을 수 있다.

  • PDF

자동 변형 모델을 이용한 다중 물체 검출 및 추적 (A Multiple Object Detection and Tracking Using Automatic Deformable Model)

  • 우장명;김성동;최기호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(상)
    • /
    • pp.290-293
    • /
    • 2003
  • 다중 물체 추적은 움직이는 물체를 추출하고 검출된 정보와 물체 정보를 이용하여 움직임 궤도률 추적하는 것이다. 따라서 정확한 움직임 추적이 수행되려면 효율적인 물체의 추출이 선행 되어 져야 한다. 일반적으로 영상 분할 알고리즘은 다양한 증류의 영상에 대한 물체의 수학적 모델이 찌대로 설정되어 있지 않기 때문에 물체를 정확하게 분리해 내기 어렵다. 그러나 물체의 추출에 주로 처리 속도가 빠른 배경영상을 이용한 차(difference) 영상 기법과 반 자동 영상분할인 Snake Model이 갖는 Active Contour 알고리즘과 같이 물체 추출 과정에서 물체의 정의니 semantic 정보를 부여 한다면 개선된 영상 분할의 결과를 얻을 수 있다. 따라서 차 영상 기법과 semantic 정보를 가진 영상분할 알고리즘은 동영상에서 움직임 물체의 VOP(Video Object Plane)를 생성하는 매우 현실적인 방법이다. 본 논문에서는 영상의 상위 레벨Semantic 정보를 이용하기 위해 변형 Snake Model를 이용한 영상분할 방법을 이용하여 영상을 추출한다. 추출된 물체는 윤곽선(곡선) 정보와 함께 에지 성분의 기울기에서 얻은 특징 점을 이용하여 물체를 추적해 나간다.

  • PDF

복잡한 배경에서 움직이는 물체의 영역분할에 관한 연구 (A Segmentation Method for a Moving Object on A Static Complex Background Scene.)

  • 박상민;권희웅;김동성;정규식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.321-329
    • /
    • 1999
  • Moving Object segmentation extracts an interested moving object on a consecutive image frames, and has been used for factory automation, autonomous navigation, video surveillance, and VOP(Video Object Plane) detection in a MPEG-4 method. This paper proposes new segmentation method using difference images are calculated with three consecutive input image frames, and used to calculate both coarse object area(AI) and it's movement area(OI). An AI is extracted by removing background using background area projection(BAP). Missing parts in the AI is recovered with help of the OI. Boundary information of the OI confines missing parts of the object and gives inital curves for active contour optimization. The optimized contours in addition to the AI make the boundaries of the moving object. Experimental results of a fast moving object on a complex background scene are included.

  • PDF