• Title/Summary/Keyword: VOP detection

Search Result 7, Processing Time 0.024 seconds

Automatic Vowel Onset Point Detection Based on Auditory Frequency Response (청각 주파수 응답에 기반한 자동 모음 개시 지점 탐지)

  • Zang, Xian;Kim, Hag-Tae;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.333-342
    • /
    • 2012
  • This paper presents a vowel onset point (VOP) detection method based on the human auditory system. This method maps the "perceptual" frequency scale, i.e. Mel scale onto a linear acoustic frequency, and then establishes a series of Triangular Mel-weighted Filter Bank simulate the function of band pass filtering in human ear. This nonlinear critical-band filter bank helps greatly reduce the data dimensionality, and eliminate the effect of harmonic waves to make the formants more prominent in the nonlinear spaced Mel spectrum. The sum of mel spectrum peaks energy is extracted as feature for each frame, and the instinct at which the energy amplitude starts rising sharply is detected as VOP, by convolving with Gabor window. For the single-word database which contains 12 vowels articulated with different kinds of consonants, the experimental results showed a good average detection rate of 72.73%, higher than other vowel detection methods based on short-time energy and zero-crossing rate.

A Robust Algorithm for Moving Object Segmentation and VOP Extraction in Video Sequences (비디오 시퀸스에서 움직임 객체 분할과 VOP 추출을 위한 강력한 알고리즘)

  • Kim, Jun-Ki;Lee, Ho-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.430-441
    • /
    • 2002
  • Video object segmentation is an important component for object-based video coding scheme such as MPEG-4. In this paper, a robust algorithm for segmentation of moving objects in video sequences and VOP(Video Object Planes) extraction is presented. The points of this paper are detection, of an accurate object boundary by associating moving object edge with spatial object edge and generation of VOP. The algorithm begins with the difference between two successive frames. And after extracting difference image, the accurate moving object edge is produced by using the Canny algorithm and morphological operation. To enhance extracting performance, we app]y the morphological operation to extract more accurate VOP. To be specific, we apply morphological erosion operation to detect only accurate object edges. And moving object edges between two images are generated by adjusting the size of the edges. This paper presents a robust algorithm implementation for fast moving object detection by extracting accurate object boundaries in video sequences.

Preprocessing System for Real-time and High Compression MPEG-4 Video Coding (실시간 고압축 MPEG-4 비디오 코딩을 위한 전처리 시스템)

  • 김준기;홍성수;이호석
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.5
    • /
    • pp.509-520
    • /
    • 2003
  • In this paper, we developed a new and robust algorithm for a practical and very efficient MPEG-4 video coding. The MPEG-4 video group has developed the video Verification Model(VM) which evolved through time by means of core experiments. And in the standardization process, MS-FDAM was developed based on the standard document of ISO/IEC 14496-2 and VM as a reference MPEG-4 coding system. But MS -FDAM has drawbacks in practical MPEG-4 coding and it does not have the VOP extraction functionality. In this research, we implemented a preprocessing system for a real-time input and the VOP extraction for a practical content-based MPEG-4 video coding and also implemented the motion detection to achieve the high compression rate of 180:1.

Video object segmentation and frame preprocessing for real-time and high compression MPEG-4 encoding (실시간 고압축 MPEG-4 부호화를 위한 비디오 객체 분할과 프레임 전처리)

  • 김준기;이호석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.147-161
    • /
    • 2003
  • Video object segmentation is one of the core technologies for content-based real-time MPEG-4 encoding system. For real-time requirement, the segmentation algorithm should be fast and accurate but almost all existing algorithms are computationally intensive and not suitable for real-time applications. The MPEG-4 VM(Verification Model) has provided basic algorithms for MPEG-4 encoding but it has many limitations in practical software development, real-time camera input system and compression efficiency. In this paper, we implemented the preprocessing system for real-time camera input and VOP extraction for content-based video coding and also implemented motion detection to achieve the 180 : 1 compression rate for real-time and high compression MPEG-4 encoding.

An Automatic Segmentation Method for Video Object Plane Generation (비디오 객체 생성을 위한 자동 영상 분할 방법)

  • 최재각;김문철;이명호;안치득;김성대
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.146-155
    • /
    • 1997
  • The new video coding standard Iv1PEG-4 is enabling content-based functionalities. It requires a prior decomposition of sequences into video object planes (VOP's) so that each VOP represents moving objets. This paper addresses an image segmentation method for separating moving objects from still background (non-moving area) in video sequences using a statistical hypothesis test. In the proposed method. three consecutive image frames are exploited and a hypothesis testing is performed by comparing two means from two consecutive difference images. which results in a T-test. This hypothesis test yields a change detection mask that indicates moving areas (foreground) and non-moving areas (background), Moreover. an effective method for extracting

  • PDF

A Multiple Object Detection and Tracking Using Automatic Deformable Model (자동 변형 모델을 이용한 다중 물체 검출 및 추적)

  • 우장명;김성동;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.290-293
    • /
    • 2003
  • 다중 물체 추적은 움직이는 물체를 추출하고 검출된 정보와 물체 정보를 이용하여 움직임 궤도률 추적하는 것이다. 따라서 정확한 움직임 추적이 수행되려면 효율적인 물체의 추출이 선행 되어 져야 한다. 일반적으로 영상 분할 알고리즘은 다양한 증류의 영상에 대한 물체의 수학적 모델이 찌대로 설정되어 있지 않기 때문에 물체를 정확하게 분리해 내기 어렵다. 그러나 물체의 추출에 주로 처리 속도가 빠른 배경영상을 이용한 차(difference) 영상 기법과 반 자동 영상분할인 Snake Model이 갖는 Active Contour 알고리즘과 같이 물체 추출 과정에서 물체의 정의니 semantic 정보를 부여 한다면 개선된 영상 분할의 결과를 얻을 수 있다. 따라서 차 영상 기법과 semantic 정보를 가진 영상분할 알고리즘은 동영상에서 움직임 물체의 VOP(Video Object Plane)를 생성하는 매우 현실적인 방법이다. 본 논문에서는 영상의 상위 레벨Semantic 정보를 이용하기 위해 변형 Snake Model를 이용한 영상분할 방법을 이용하여 영상을 추출한다. 추출된 물체는 윤곽선(곡선) 정보와 함께 에지 성분의 기울기에서 얻은 특징 점을 이용하여 물체를 추적해 나간다.

  • PDF

A Segmentation Method for a Moving Object on A Static Complex Background Scene. (복잡한 배경에서 움직이는 물체의 영역분할에 관한 연구)

  • Park, Sang-Min;Kwon, Hui-Ung;Kim, Dong-Sung;Jeong, Kyu-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.321-329
    • /
    • 1999
  • Moving Object segmentation extracts an interested moving object on a consecutive image frames, and has been used for factory automation, autonomous navigation, video surveillance, and VOP(Video Object Plane) detection in a MPEG-4 method. This paper proposes new segmentation method using difference images are calculated with three consecutive input image frames, and used to calculate both coarse object area(AI) and it's movement area(OI). An AI is extracted by removing background using background area projection(BAP). Missing parts in the AI is recovered with help of the OI. Boundary information of the OI confines missing parts of the object and gives inital curves for active contour optimization. The optimized contours in addition to the AI make the boundaries of the moving object. Experimental results of a fast moving object on a complex background scene are included.

  • PDF