• Title/Summary/Keyword: VOLATILE ORGANIC COMPOUND

Search Result 268, Processing Time 0.023 seconds

A Study on the Operational Variables of the UV-TiO$_2$ Based Photocatalytic Air Cleaning System (UV-TiO$_2$ 광촉매 기반의 공기 정화 시스템의 운전조건에 대한 연구)

  • Han, Chang-Seok;Chang, Hyuk-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.293-301
    • /
    • 2008
  • A study on the operational variables of the UV-TiO$_2$ based photocatalytic air cleaning system was tried. In this study, to examine effects as various air cleaning system conditions, a duct-type reactor was made, and TiO$_2$ was immobilized on a stainless mesh. Benzene was chosen as a target compound. Removal experiments for benzene were done under different initial benzene concentration, air velocity, TiO$_2$ loading, area coated TiO$_2$ as the same TiO$_2$ loading, and UV light intensity conditions. During the experiments, relative humidity was 55%, and reactor temperature was 45$^{\circ}C$. As a result, the photocatalytic degradation of benzene decreased as the inlet concentration increased. But the photocatalytic degradation increased as the concentration boundary layer thickness, amount of TiO$_2$, area coated TiO$_2$ as the same amount of TiO$_2$, and UV light intensity increased. Based on results of current study, they can be applied to the design of air cleaning system over low level VOCs in the indoor air.

Test Method Using VOC Analyzer to Measure VOC Emission of Paints for Wood-based Panel (VOC Analyzer를 이용한 목재용 도료의 휘발성유기화합물의 간이측정)

  • Eom, Young Geun;Kim, Ki-Wook;An, Jae-Yun;Kim, Hyun-Joong;Moon, Suck-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.65-72
    • /
    • 2007
  • The VOC (volatile organic compound) analyzer is devised to measure the four main aromatic hydrocarbon gases: toluene, ethylbenzene, xylene and styfene. It is not affected by ambient temperature and humidity. In addition, standby and measuring time of VOC Analyzer is a short as below 30 min and 8 min, respectively. Since the semiconductor gas sensor is supersensitive to gas components, it is not necessary to use a conventional gas concentrator or other complicated equipment. In this study, VOC emission behavior from 4 types paints (lacquer, urethane vanish, water-base paint, enamel paint) for wood-based panel was investigated using VOC Analyzer. After a specimen was spreaded on aluminum foil ($6.32{\times}6.32cm$) in $3{\ell}$ polyester bag, after 24 hours we could measure maximum VOC emission level that is a stabilized VOC value. Xylene of VOCs was high emitted from lacquer, urethane vanish and water-based paint, and TVOC (Toluene + Ethylbenzene + Xylene + Styrene) of lacquer was the highest emission concentration than another.

Characteristics of Fermentation and Aging by Different Adding of Brewing Water in Korean Traditional Cheongju (가수량을 달리한 전통 청주의 발효 및 숙성 특성 연구)

  • Moon, Jin-Seok;Kong, Tae-In;Cheong, Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5468-5475
    • /
    • 2015
  • This present work was aimed to analyse characteristics of fermentation and aging of Korean traditional cheongju prepared by adding of different brewing water. The three different mashes were used for fermentation and maturation. The cheongju(A) was prepared without adding of brewing water in two stage mashing. Cheongju(B) and cheongju(C) were made with adding of 1 liter and 2 liter brewing water in two stage mashing respectively whereas the cheongju(B) and cheongju(C) showed higher fermentation ability than that of cheongju(A) regarding to pH, ethanol, specific gravity and sugar concentration(brix). In terms of volatile compounds content after six months aging, cheongju(A and B) prepared by adding brewing water showed the higher content of ethyl acetate than that of cheong(C) and the concentrations were maintained during the aging period. In addition, the content of fusel oil(n-propanol, i-butanol, n-butanol, i-bmyl alcohol, n-bmyl alcohol)indicated similar pattern as ethyl acetate. The organic acid of cheongju B(4873.46 mg/l) and C(4963.12 mg/l) also indicated the higher content than that of cheongju A(4661.47 mg/l). In conclusion, cheongju B and C prepared by adding brewing water in two stage mashing showed better quality and taste than that of cheongju A.

Biofilter Model for Robust Biofilter Design: 2. Dynamic Biofilter Model (강인한 바이오필터설계를 위한 바이오필터모델: 2. 동적 바이오필터모델)

  • Lee, Eun Ju;Song, Hae Jin;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.155-161
    • /
    • 2012
  • A dynamic biofilter model was suggested to integrate the effect of biofilter-medium adsorption capacity on the removal efficiency of volatile organic compound (VOC) contained in waste air. In particular, the suggested biofilter model is composed of four components such as biofilm, gas phase, sorption volume and adsorption phase and is capable of predicting the unsteady behavior of biofilter-operation. The process-lumping model previously suggested was limited in the application for the treatment of waste air since it was derived under the assumption that the adsorbed amount of VOC equilibrated with biofilter-media would be proportional to the concentration of dissolved VOC in the sorption volume of biofilter-media. Therefore a Freundlich adsorption isotherm was integrated into a robust biofilter process-lumping model applicable to a wide range of VOC concentration. The values of model parameters related to biofilter-medium adsorption were obtained from the dynamic adsorption column experiments in the preceding article and literature survey. Furthermore a separate biofilter experiment was conducted to treat waste air containing ethanol and the experimental result was compared with the model predictions with various values of Thiele modulus (${\phi}$). The obtained value of Thiele modulus (${\phi}$) was close to 0.03.

Bioactive Foam Reactors for the Enhanced Biological Degradation of Toluene (계면활성제 거품을 이용한 미생물반응기에서의 기체상 톨루엔 분해)

  • Kim, Yong-Sik;Son, Young-Kyu;Khim, Jee-Hyung;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.468-475
    • /
    • 2005
  • Biofilters packed with various materials have emerged as a sustainable technology for the treatment of volatile organic compounds (VOCs); however, problems including low performance and clogging are commonly encountered. Recently, a bioactive foam reactor (BFR) using surfactants has been suggested to ensure efficient and stable VOCs removal performance. This study was mainly conducted to investigate the feasibility of BFRs using toluene as a model compound. Prior to bioreactor studies, a series of bottle tests were used to select a suitable surfactant for the BFR application. Experimental results of the batch bottle tests indicated that TritonX-100 was the most appropriate one among the surfactants tested, since it showed a minimal effect on the toluene biodegradation rate while the other surfactants lowered the toluene biodegradation rate significantly. Using the selected surfactant, the BFR performance was determined by changing operating parameters including gas residence time and toluene loading. As the gas residence time increased from 0.5 minutes to 2 minutes, the toluene removal efficiency increased from approximately 50% to 80%. In addition, an increase of the toluene loading from $38\;g/m^3/hr$ to $454\;g/m^3/hr$ resulted in a decrease of toluene removal efficiency from approximately 70% to 20%. The BFR had a maximum elimination capacity of $108\;g/m^3/hr$ for toluene, which was much higher than those generally reported in the literature. The high toluene-elimination performance indicates that the BFR be a potential alternative to the conventional, packed-type biofilters. However, the limitation of toluene solubilization and foam stability at either high or low gas flow rate are still problems to be challenged.

A portable electronic nose (E-Nose) system using PDA device (개인 휴대 단말기 (PDA)를 기반으로 한 휴대용 E-Nose의 개발)

  • Yang, Yoon-Seok;Kim, Yong-Shin;Ha, Seung-Chul;Kim, Yong-Jun;Cho, Seong-Mok;Pyo, Hyeon-Bong;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.69-77
    • /
    • 2005
  • The electronic nose (e-nose) has been used in food industry and quality controls in plastic packaging. Recently it finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. Moreover, the use of portable e-nose enables the on-site measurements and analysis of vapors without extra gas-sampling units. This is expected to widen the application of the e-nose in various fields including point-of-care-test or e-health. In this study, a PDA-based portable e-nose was developed using micro-machined gas sensor array and miniaturized electronic interfaces. The rich capacities of the PDA in its computing power and various interfaces are expected to provide the rapid and application specific development of the diagnostic devices, and easy connection to other facilities through information technology (IT) infra. For performance verification of the developed portable e-nose system, Six different vapors were measured using the system. Seven different carbon-black polymer composites were used for the sensor array. The results showed the reproducibility of the measured data and the distinguishable patterns between the vapor species. Additionally, the application of two typical pattern recognition algorithms verified the possibility of the automatic vapor recognition from the portable measurements. These validated the portable e-nose based on PDA developed in this study.

Physicochemical characteristics and volatile flavor compounds of produced mixture wine with kiwi and permission fruits using wild yeast, Saccharomyces cerevisiae Y28 (야생 효모 Saccharomyces cerevisiae Y28을 이용하여 제조한 참다래-대봉감 혼합과실주의 이화학적 특성 및 향기성분)

  • Lee, Hee Yul;Seo, Weon Taek;Jeong, Seong Hoon;Hwang, Chung Eun;Ahn, Min Ju;Lee, Ae Ryeon;Shin, Ji Hyun;Lee, Joo Young;Jo, Hyeon Kook;Cho, Kye Man
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.98-109
    • /
    • 2016
  • The study was aimed to investigate the mixing ratio of kiwi and persimmon juices for the production of good quality wine by Saccharomyces cerevisiae Y28. Firstly, the optimum condition of rapidase treatment for the kiwi and persimmon juices was established, thereafter various mixing ratio (10:0, 9:1, 8:2, 7:3, 6:4, 5:5) of kiwi and persimmon was investigated regarding physiochemical properties and flavor compounds of wine. As the result, the optimum conditions were obtained as 0.3% rapidase for 1 h in kiwi and 0.3% rapidase for 3 h in persimmon. According to higher ration of persimmon, the pH of wines increased from 3.69 to 3.77, while the acidity of wines decreased from 2.07% to 1.51% at 14 days fermentation. The ranges of brix and reducing sugar in wines were decreased which ranges around 9.6 to 8.8 and 6.07 to 6.90 g/L, respectively, after fermentation. Major organic acid in wines were identified as tartaric acid, malic acid, and citric acid. A small amount of free sugar such as sucrose and glucose were detected in wines, but fructose was completely absent. The soluble phenolic contents were decreased that ranges around 1.00 to 1.25 g/L, in contrast, browning degree were increased ranges around 0.212 to 0.412 after fermentation. The major flavor components were identified as ethyl acetate and hydrazine, and 1,1-dimethyl. Importantly, phenylethyl alcohol was detected from the all wines that have a typical rose like flavor. But sensory test results and preference of kiwi-persimmon (7:3) mixing wine was better than the other wines.

Photocatalytic Treatment of Waste Air Containing Malodor and VOC by Photocatalytic Reactor Equipped with the Cartridges Containing the Media Carrying Photocatalyst (광촉매 카트리지를 활용한 악취 및 VOC를 함유한 폐가스의 광촉매처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.80-86
    • /
    • 2013
  • In this study, the photocatalytic reactor system equipped with photocatalyst-carrying-silica-media cartridges [photocatalytic reactor system (1)] was used to perform the treatment of waste air containing malodor and volatile organic compound (VOC). The result of its performance was evaluated and compared with that of the photocatalytic reactor system equipped with commercial photocatalyst-carrying-nonwoven filter-media cartridges [photocatalytic reactor system (2)]. In case of photocatalytic reactor system (1), at the 1st stage of run the removal efficiencies of ethanol and toluene continued to be 80% and 20%, respectively. However, unlike toluene, the removal efficiency of ethanol dropped to 40% at the end of the 1st stage of run. The removal efficiency of hydrogen sulfide decreased from 100% to 90%. At the 2nd stage of its run the removal efficiency of ethanol decreased to 10% while the removal efficiencies of hydrogen sulfide and toluene remained as same as 90% and 20%, respectively, even though the inlet load of toluene increased by factor of four. In the 3rd stage of its run, as the result of application of aluminium-coated reflector film to the inner wall of photocatalytic reactor system, the removal efficiencies of ethanol and toluene increased by 5% to be 15% and 25%, respectively. In case of photocatalytic reactor system (2), at the 1st stage of its run, the removal efficiencies of ethanol, hydrogen sulfide and toluene continued to be 10%, 97% and 100%, respectively. However, at 2nd stage of its run their removal efficiencies became 5%, 95% and 2~3%, respectively, which showed that the removal efficiencies of ethanol and hydrogen sulfide decreased insignificantly while the removal efficiency of toluene dropped significantly from the perfect elimination. Moreover, the reflector film did not affect the performance of photocatalytic reactor system (2) at all. Therefore the removal of ethanol, hydrogen sulfide and toluene by photocatalytic reactor system (2) was mainly attributed to hydrophobic adsorption of its nonwoven filter media and its extent of photocatalytic removal turned out to be negligible, compared to that of photocatalytic reactor system (1).