• Title/Summary/Keyword: VOF equation

Search Result 46, Processing Time 0.022 seconds

Analysis of Wave Forces Acting on Vertical Cylinder and Wave Transformations by S-Dimensional VOF Method (3차원 VOF법에 의한 주상구조물에 작용하는 파력과 파랑변형 해석)

  • Lee, Sang-Ki;Kim, Chang-Hoon;Kim, Do-Sam;Sin, Dong-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.377-381
    • /
    • 2006
  • Recently, as economy grow and population increase we need to develop our coastal area and make good use of it for various purposes. That's why large structures are being installed on the sea. Some samples are petroleum storage tanks, pier of sea bridges. These are large structures which have been installed at coastal area. When we design such vertical cylinder, we should avoid too much construction expense caused by excessive designing or by lack of sufficient design. In order to prevent excessive expenditure, it is important to correctly calculate the force of waves acting on structures and predict the wave transformation. In this study, apply to VOF method based on Navier-Stokes equation and then discussed that nonlinear wave force and wave transformation. A comparison between the numerical model and existing experimental results showed nice agreement among them.

  • PDF

Correlation between Welding Parameters and Detaching Drop Size using Regression (회귀 분석을 이용한 용접 변수와 이탈 액적 크기의 상호 관계)

  • 최상균;한창우;이상룡;이영문
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2002
  • Metal Transfer in gas metal arc (GMA) welding is a complex phenomenon affected by many parameters of the welding conditions and material properties. In this research, the correlation equation between the welding condition and detaching droplet size and detaching velocity in GMA welding was studied via recession analysis on the results of numerical analysis using the volume-of-fluid (VOF) method. Welding parameters and material properties were grouped into three dimensionless numbers and detaching droplet size was expressed as the function of them. Second order and exponential multi-variable correlation forms were assumed, and the coefficients of these equations were calculated for globular and spray modes as well as entire transfer modes. Applying correlation equation into available experimental data, it shows good agreement.

Numerical Simulation of Wave Deformation due to a Submerged Structure with a Second-order VOF Method (2차 정확도 VOF기법을 활용한 수중구조물에 의한 파랑변화 예측)

  • Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.111-117
    • /
    • 2010
  • A three-dimensional numerical model is employed to investigate wave deformation due to a submerged structure. The three-dimensional numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES(large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS(sub-grid scale) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF(volume-of-fluid) method is used to track the distorted and broken free surface. A simple linear wave is generated on a constant depth and compared with analytical solutions. The model is then applied to study wave deformation due to a submerged structure and the predicted results are compared with available laboratory measurements.

Development and verification of a combined method of BEM and VOF (BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토)

  • Kim Sang-Ho;Yannshiro Masaru;Yoshida Akinori;Hashimoto Noriaki;Lee Jong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.153-159
    • /
    • 2005
  • Recently, various novel numerical models based on Navier-Stokes equation rave been developed for calculating wave motions in the sea with coastal or ocean structures. Among those models, Volume Of Fluid (VOF) method might be the most popular one, and it has been used for numerical simulations of wave motions including complicated phenomena of wave breakings. VOF method, however, needs enormous computation time and large computational storage memories in general, thus it is practically difficult to use VOF method for calculations in the case of random waves because long and stable computation ( e.g. for more than 100 significant wave periods) is required to obtain statistically meaningful results. On the other hand of the wave motion is potential motion, Boundary Element Method (BEM), which is a much faster and more accurate method than VOF method, am be effectively used. The aim of this study is to develop a new efficient model applicable to calculations of wave motion and/or wave-structure interactions under random waves. To achieve this, a strictly combined BEM-VOF model has been developed by making the best use of both methods' merits; VOF method is used in a restricted fluid domain around a structure where complicated phenomena of wave breakings may exist, and BEM is used in the other domains far from the disturbance where the wave motion may be assumed to be potential. The verification of the model was performed with numerical results for Stokes'5th order wave propagation and a random wave propagation.

  • PDF

Development and verification of a combined method of BEM and VOF (BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토)

  • Kim Sang-Ho;Yamashiro Masaru;Yoshida Akinori;Hashimoto Noriaki;Lee Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.853-858
    • /
    • 2005
  • Recently, various novel numerical models based on Navier-Stokes equation have been developed for calculating wave motions in the sea with coastal or ocean structures. Among those models, Volume Of Fluid (VOF) method might be the most popular one, and it has been used for numerical simulations of wave motions including complicated phenomena of wave breakings. VOF method, however, needs enormous computation time and large computational storage memories in general, thus it is practically difficult to use this method for calculations in the case of random waves because long and stable computation (e.g for more than 100 significant wave periods) is required to obtain statistically meaningful results. On the other hand if the wave motion is potential motion, Boundary Element Method (BEM), which is a much faster and more accurate method than VOF method, can be effectively used. The aim of this study is to develop a new efficient model applicable to calculations of wave motion and/or wave-structure interactions under random waves. To achieve this, a strictly combined BEM-VOF model has been developed by making the best use of both methods' merits; VOF method is used in a restricted fluid domain around a structure where complicated phenomena of wave breakings may exist, and BEM is used in the other domains far from the disturbance where the wave motion may be assumed to be potential. The verification of the model was performed with numerical results for Stokes' 5th order wave propagation and a random wave propagation.

Circular Motion Test Simulation of KVLCC1 Using CFD (CFD를 이용한 KVLCC1의 Circular Motion Test 시뮬레이션)

  • Shin, Hyun-Kyoung;Jung, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.377-387
    • /
    • 2010
  • In this study, the turbulent free surface around KVLCC1 employed in the circular motion test simulation is numerically calculated using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. Also, hydrodynamic forces and yaw moments around a ship model are calculated during the steady turning. Numerical simulations of the turbulent flows with free surface around KVLCC1 have been carried out by use of RANS equation based on calculation of hydrodynamic forces and yaw moments exerted upon the ship hull. Wave elevation is simulated by using the VOF method. VOF method is known as one of the most effective numerical techniques handling two-fluid domains of different density simultaneously. Boundary layer thickness and wake field are changed various yaw velocities of ship model during the steady turning. The calculated hydrodynamic forces are compared with those obtained by model tests.

Numerical Simulation of Nonlinear Free-Surface Flow around Seawall with Slope (경사면을 갖는 월파형 구조물 주위의 비서형성 자유표면류의 수치 시뮬레이션)

  • PARK JONG-CHUN;PARK DONG-IN;LEE SANG-BEOM;HONG GI-YONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.90-95
    • /
    • 2004
  • During the past 50 years methods for predicting wave overtopping of coastal structures have coastal structures have continuously been developed Wave overtopping is one of the most important processes for the design of seawalls. The term 'wave overtopping' is used here to refer to the processes where waves hit a sloping structure run up the slope and, if the crest level of the slope is lower than the highest run up level, overtop the structure. Wave overtopping is dependent on the processes associated with breaking wave. The Numerical model is based on Navier-Stokes equation and Marker-Density Function of method for nonlinear free-surface flow by Miyata & Park(1995). The influence of how the slopes of seawalls, wave type and crest freeboard affect overtopping discharges has been investigated. The research of study using the new development nonlinear free-surface flow numerical model SOLA-VOF are presented.

  • PDF

Wave Forces Acting on Vertical Cylinder and Their Wave Transformations by 3-Dimensional VOF Method (3차원 VOF법에 의한 연직 주상구조물에 작용하는 파력과 구조물에 의한 파랑변형 해석)

  • Lee, Kwang-Ho;Lee, Sang-Ki;Sin, Dong-Hoon;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.12-21
    • /
    • 2007
  • As the economy grows and the population increases, we need to develop our coastal area and make use of it for various purposes. Specifically, investigation of the wave interactions on and around the vertical cylinders is very important in the design of the offshore or coastal structures. The nonlinear potential analysis developed so far, although very useful, has been found to be limited in application, as strong nonlinear waves generated by the interference between multilayered cylinders and wave impact forces by breaking waves can hardly be estimated. In this study, using a 3-Dimensional volume tracking method VOF(Volume of Fluid), based on Namer-Stokes equations, was developed to simulate highly nonlinear effects, such as breaking waves at the interface or complicated interference waves among structures. A numerical method for nonlinear interaction wave and vertical cylinders is newly proposed. The wave forces and wave transformations computed by the newly proposed numerical simulation method were compared to the other researcher's experimental results, and the results agree well. Based on the validation of this study, this numerical method is applied to the two vertical cylinders to discuss their nonlinear wave forces and wave transformations, according to the variations of separate distance of vertical cylinders.

Development of a Cartesian-based Code for Effective Simulation of Flow Around a Marine Structure - Integration of AMR, VOF, IBM, VIV, LES (효율적인 해양구조물 유동 해석을 위한 직교좌표계 기반의 코드 개발 - AMR, VOF, IBM, VIV, LES의 통합)

  • Lee, Kyongjun;Yang, Kyung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.409-418
    • /
    • 2014
  • Simulation of flow past a complex marine structure requires a fine resolution in the vicinity of the structure, whereas a coarse resolution is enough far away from it. Therefore, a lot of grid cells may be wasted, when a simple Cartesian grid system is used for an Immersed Boundary Method (IBM). To alleviate this problems while maintaining the Cartesian frame work, we adopted an Adaptive Mesh Refinement (AMR) scheme where the grid system dynamically and locally refines as needed. In this study, We implemented a moving IBM and an AMR technique in our basic 3D incompressible Navier-Stokes solver. A Volume Of Fluid (VOF) method was used to effectively treat the free surface, and a recently developed Lagrangian Dynamic Subgrid-scale Model (LDSM) was incorporated in the code for accurate turbulence modeling. To capture vortex induced vibration accurately, the equation for the structure movement and the governing equations for fluid flow were solved at the same time implicitly. Also, We have developed an interface by using AutoLISP, which can properly distribute marker particles for IBM, compute the geometrical information of the object, and transfer it to the solver for the main simulation. To verify our numerical methodology, our results were compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. Using the verified code, we investigated the following cases. (1) simulating flow around a floating sphere. (2) simulating flow past a marine structure.

Effects of Wave Focusing Device on Performance of OWC Chamber (OWC형 파력발전 공기실의 파랑집중장치의 효과에 대한 수치적인 연구)

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Jin, Ji-Yuan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2010
  • Oscillating Water Column (OWC) device has been widely employed in the wave energy conversion. Wave Focusing Device (WFD) is proposed to be helpful for improving the operating performance of OWC chamber. In the present paper, a Numerical Wave Tank (NWT) using two-phase VOF model is utilized to simulate the generation and propagation of incident regular waves, water column oscillation inside the chamber. The NWT consists of the continuity equation, Reynolds-averaged Navier-Stokes equations and two-phase VOF functions. The standard k- turbulence model, the finite volume method, NITA-PISO algorithm and dynamic mesh technique are employed. Effects of WFD on the operating performance of OWC chamber are investigated numerically.