• Title/Summary/Keyword: VOC treatment

Search Result 109, Processing Time 0.038 seconds

Principle and Commercialization of Biofilter for Treatment of Volatile Organic Compounds (VOC 처리를 위한 Biofilter 개발 원리 및 상업화)

  • Lee E. Y.;Hwang J. W.;Kang Y. S.;Moon C. H.;Park S.
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.85-106
    • /
    • 2004
  • Styrene as volatile organic compounds(VOC) has come under strict regulatory control as they cause serious health and environmental problems. Biofiltration offers a number of economical and environmental advantages over conventional technologies, such as incineration, catalytic adsorption, and chemical scrubbing. In this presentation, recent progresses on the development of lab-scale biofilter for the treatment of gas-phase styrene are reviewed, The potentials of commercialization of biofilter systems are also discussed.

  • PDF

Biological Removal of a VOC Mixture in a Two-stage Bioreactor (이단미생물반응조에서 혼합 VOCs의 생분해 특성)

  • Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.758-766
    • /
    • 2006
  • A two-stage bioreactor, which consists of a biotrickling filter module and a biofilter module in series, was investigated for the enhanced treatment of a VOC mixture, toluene and methyl ethyl ketone (MEK). Throughout the experiments, the overall inlet loading rate was maintained at approximately $43g/m^3/hr$, but the inlet ratios of the VOCs were modified. The experimental results showed that the different ratios of the VOC mixture resulted in changes of overall removal efficiencies, elimination capacities (ECs) and microbial accumulation on the surface of each packing material. The ratio of inlet toluene to MEK at 50 : 150 was found to be most effective in terms of the overall removal efficiency, because, at this condition, MEK (i.e., the hydrophilic compound) was mostly removed in the biotrickling filter module and the following biofilter module was used to remove toluene. It was also found that when the inlet loading rate of the VOC mixture was serially increased stepwise within short-term periods, the ECs for toluene dropped significantly but the ECs for MEK increased at the ratio of the VOC mixture. These results implied that substrate interaction and/or substrate preferable utilization might have an effect on the biological removal of each compound in the two-stage bioreactor; therefore, the bioreactor should be operated in the condition where the substrate interaction could be minimized in order to maximize overall performance of the two-stage bioreactor.

Development of a Bioscrubber for Treatment of VOC Emissions from Contaminated Soil with Hydrocarbons (유류오염토양으로부터 발생하는 VOC가스처리를 위한 바이오스크러버 개발)

  • 장윤영;황경엽;곽재호;최대기
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.83-90
    • /
    • 1997
  • Aiming at the treatment of large volumes of gas with a low concentration of poorly water soluble VOC(Volatile Organic Compound), a new system is proposed: the combination absorption tower/bioreactor. In the scrubber part of the bioscrubbing system, the contaminating compounds are absorbed in a aqueous phase. The contaminated scrubbing liquid is transported to the bioreactor, where the compounds are biodegraded by aerobic microorganisms (mainly to carbon dioxide, water, and biomass). In this study, separation of a volatile organic compound(VOC) out of a waste gas stream has been carried out using a re-cyclable high boiling point extrant(HBE). The liquid stream containing a high boiling point entrant(HBE) scrubs the gas stream in a direct gas-liquid countercurrent contacting operation in a packed tower for the removal of said component from the gaseous stream. A packed-bed column using Pall Ring was set up in order to simulate practical conditions for the scrubbing tower. The liquid stream transported to the bioreactor is recovered and recycled to the scrubber. The model gas, which contained 400 mg/$\textrm{m}^3$ of toluene, at a rate of 100 L/min, flowed into the packed column where the scrubbing liquid trickled over the packing in countercurrent to the rising gas at 10~15L/min. The bioscrubber designed for large volume air streams containing VOCs showed removal efficiency up to 80% in an optimum operating conditions during the tests fer removing toluene from an air stream by scrubbing the air stream with HBE.

  • PDF

The Detection of VOCs in Effluents from Several Wastewater Treatment Plants and Industry Drains in Nakdong River Basin (낙동강 유역 일부 폐수처리장 방류수 및 공단배수로의 휘발성유기화합물(VOCs)의 분포현황)

  • Bae, Hun-Kyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.254-259
    • /
    • 2012
  • The discharge characteristics of Volatile Organic Compounds (VOCs) from seven wastewater treatment plants and two industry drains at Nakdong River basin were investigated. Four Sampling campaigns were conducted between May 2008 and November 2008, and tested for 17 VOCs. As results, eight VOCs were detected at some sampling sites, but their concentration levels were low; 0.19~3.41 ${\mu}g/L$, dependent on each sampling location and substance. However, proper management plans such as supervising and monitoring systems for VOCs are needed to control those pollutants since VOCs might affect human health as well as aquatic ecosystems with extremely low concentration levels.

Effect of Ozone Treatment for Nakdong River Raw Water - II. Removal of VOCs and Algae in Raw Water by Conducting Batch Test of Ozonation Experiments - (낙동강 상수원수의 오존처리 효과 - II. 회분식 오존처리에 의한 휘발성유기화합물 및 조류제거 효과 -)

  • 임영성;이홍재;이도진;허종수;손보균;조주식
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1267-1274
    • /
    • 2002
  • This study was carried out to evaluate the pollutant removal efficiencies of the advanced drinking water treatment using ozonation process. For raw water, Nakdong River was used. By conducting batch test of ozonation, the following results were obtained. When ozone dosage of $5 mg/{\ell}$ was used, ozone transfer and utilization efficiencies of the ozonation were 94 to 92%, respectively. Removal efficiencies of single VOC compound or mixed VOC compounds in the raw water were 80% to 90% by the ozonation with $2 mg/{\ell}$ dosage and 10 minutes contact time. Removal efficiencies of ABS by the ozonation with $1 mg/{\ell}$, $3 mg/{\ell}$ dosage and 20 minutes contact time were 83% to 96%, respectively. Almost 67% of chlorophyll-a at the concentration of $38.4\mu\textrm{g}/{\ell}$ was removed by ozonation at ozone dosage of $1 mg/{\ell}$ for 20 min. Considering the efficiency of ozone utilization and water treatment, the most effective ozonation could be obtained with high ozone dosage and short contact time.

Characterization of Volatile Organic Compounds(VOCs) Concentrations in Jinju (진주시 대기중 휘발성 유기화합물의 농도특성 기초조사)

  • Park, Jeong-Ho;Park, Hyung-Gun;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • In order to study the seasonal patterns and possible origins of air concentrations of volatile organic compounds(VOC), measurements were taken with GC-MS at 3 sampling sites in Jinju for 12 months from Mar. 2010 to Feb. 2011. Atmospheric VOC are sampled on tubes containing solid adsorbents(Tenax TA) with a time resolution of 2hrs. Composition and concentration of VOC are analysed with a GC system equipped with thermal desorption apparatus(ATD). The most abundant compound appeared to be Toluene, Ethylbenzene and m,p-Xylene. The mean concentrations of Benzene were 0.20 ppb at GN site, 0.18 ppb at DA site, and 0.25 ppb at SP site, respectively. VOC concentration showed a strong seasonal variation, with higher concentrations during the spring and lower concentrations during the summer. The results showed that monthly fluctuations in measured VOC concentrations depended on variations in the strength of sources, as well as on photochemical activity and meteorological conditions. In Jinju, the total VOC emissions for 2009 were estimated to be 4,407 ton/year by Clean Air Policy Support System(CAPSS). It is shown that solvent use 57.5%(2,534 ton/yr), waste treatment and disposal 23.3%(1,025 ton/yr), and mobil source-road traffic 12.2%(537 ton/yr) are the most significant anthropogenic source.

Optimum dimensionally stable anode with volatilization and electrochemical advanced oxidation for volatile organic compounds treatment (전극의 부반응 기포발생에 따른 휘발특성과 전기화학고도산화능을 동시에 고려한 휘발성 유기화합물 처리용 최적 불용성전극 개발)

  • Cho, Wan-Cheol;Poo, Kyung-Min;Lee, Ji-Eun;Kim, Tae-Nam;Chae, Kyu-Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Volatile organic compounds(VOCs) are toxic carcinogenic compounds found in wastewater. VOCs require rapid removal because they are easily volatilized during wastewater treatment. Electrochemical advanced oxidation processes(EAOPs) are considered efficient for VOC removal, based on their fast and versatile anodic electrochemical oxidation of pollutants. Many studies have reported the efficiency of removal of various types of pollutants using different anodes, but few studies have examined volatilization of VOCs during EAOPs. This study examined the removal efficiency for VOCs (chloroform, benzene, trichloroethylene and toluene) by oxidization and volatilization under a static stirred, aerated condition and an EAOP to compare the volatility of each compound. The removal efficiency of the optimum anode was determined by comparing the smallest volatilization ratio and the largest oxidization ratio for four different dimensionally stable anodes(DSA): Pt/Ti, $IrO_2/Ti$, $IrO_2/Ti$, and $IrO_2-Ru-Pd/Ti$. EAOP was operated under same current density ($25mA/cm^2$) and electrolyte concentration (0.05 M, as NaCl). The high volatility of the VOCs resulted in removal of more than 90% within 30 min under aerated conditions. For EAOP, the $IrO_2-Ru/Ti$ anode exhibited the highest VOC removal efficiency, at over 98% in 1 h, and the lowest VOC volatilization (less than 5%). Chloroform was the most recalcitrant VOC due to its high volatility and chemical stability, but it was oxidized 99.2% by $IrO_2-Ru/Ti$, 90.2% by $IrO_2-Ru-Pd/Ti$, 78% by $IrO_2/Ti$, and 75.4% by Pt/Ti anodes The oxidation and volatilization ratios of the VOCs indicate that the $IrO_2-Ru/Ti$ anode has superior electrochemical properties for VOC treatment due to its rapid oxidation process and its prevention of bubbling and volatilization of VOCs.

Operation of Biofilters with Different Packing Material - development of media and biological parameters for optimal odor treatment process in a biofilter (담체변화에 따른 Labscale 바이오필터의 성능 실험)

  • Daechul Cho;Sung Hyun Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.236-241
    • /
    • 2003
  • 산업체 발생 VOC를 효과적으로 처리하는 Biofilter 시스템을 고안하였다. 재질과 다공성이 다른 3기의 시스템으로부터 황화수소, 벤젠, 톨루엔, 크실렌의 단일성분과 복합성분계의 성능을 고찰하였다 저 pH Biofilter(pH 2-3)의 장기운전이 가능하였고 벤젠의 경우 경쟁적 저해를 나타내었으나 일정기간의 순응 이후 혼합처리시 양호한 처리능력을 보여주었다.

  • PDF

A Photocatalytic Treatment equipment of Volatile Organic Compounds (광촉매를 이용한 휘발성유기화합물의 처리장치)

  • 유재흥;김태관;유진승;김광;김혜경;박윤창;이승호
    • Environmental engineer
    • /
    • s.176
    • /
    • pp.58-63
    • /
    • 2001
  • 여러 환경정화 방법들 중 광촉매를 이용한 처리기술들이 관심을 모으고 있다. 광에 의해 활성을 갖는 여러 촉매들 가운데 이산화티타늄($TiO_2$)을 중심으로 한 연구가 가장 활발히 진행되고 있다. 본 연구는 TiO2를 개질화하여 광활성이 우수한 광촉매를 개발하고 이를 이용한 VOC 처리를 목적으로 하고 있다. VOC 중 할로겐화(halogenated)된 것들의 처리는 매우 어려우며 현재의 소각방식으로는 효과적으로 처리되고 있지 않다.

  • PDF