• Title/Summary/Keyword: VOC emission

Search Result 195, Processing Time 0.023 seconds

Emissions of Volatile Organic Compounds from a Swine Shed

  • Osaka, Nao;Miyazaki, Akane;Tanaka, Nobuyuki
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.178-191
    • /
    • 2018
  • The concentrations and chemical compositions of volatile organic compounds (VOCs), including volatile fatty acids, phenols, indoles, aldehydes, and ketones, which are the main organic compounds generated by swine, were investigated in July and October 2016 and January 2017. In addition, the emission rates and annual emissions of these components from the swine shed were estimated. The concentrations of VOCs in the swine shed averaged $511.3{\mu}g\;m^{-3}$ in summer, $315.5{\mu}g\;m^{-3}$ in fall and $218.6{\mu}g\;m^{-3}$ in winter. Acetone, acetic acid, propionic acid, and butyric acid were the predominant components of the VOCs, accounting for 80-88% of the total VOCs. The hourly variations of VOC concentrations in the swine shed in fall and winter suggest that the VOC concentrations were related to the ventilation rate of the swine shed, the activity of the swine, and the temperature in the swine shed. Accordingly, the emission rates of VOCs from the swine shed were $1-2{\times}10^3{\mu}g(h\;kg-swine)^{-1}$.

Characterization of Volatile Organic Compounds(VOCs) Concentrations in Jinju (진주시 대기중 휘발성 유기화합물의 농도특성 기초조사)

  • Park, Jeong-Ho;Park, Hyung-Gun;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • In order to study the seasonal patterns and possible origins of air concentrations of volatile organic compounds(VOC), measurements were taken with GC-MS at 3 sampling sites in Jinju for 12 months from Mar. 2010 to Feb. 2011. Atmospheric VOC are sampled on tubes containing solid adsorbents(Tenax TA) with a time resolution of 2hrs. Composition and concentration of VOC are analysed with a GC system equipped with thermal desorption apparatus(ATD). The most abundant compound appeared to be Toluene, Ethylbenzene and m,p-Xylene. The mean concentrations of Benzene were 0.20 ppb at GN site, 0.18 ppb at DA site, and 0.25 ppb at SP site, respectively. VOC concentration showed a strong seasonal variation, with higher concentrations during the spring and lower concentrations during the summer. The results showed that monthly fluctuations in measured VOC concentrations depended on variations in the strength of sources, as well as on photochemical activity and meteorological conditions. In Jinju, the total VOC emissions for 2009 were estimated to be 4,407 ton/year by Clean Air Policy Support System(CAPSS). It is shown that solvent use 57.5%(2,534 ton/yr), waste treatment and disposal 23.3%(1,025 ton/yr), and mobil source-road traffic 12.2%(537 ton/yr) are the most significant anthropogenic source.

Characteristics of Ozone Concentration Weekend Effect in Busan Area (부산지역 오존농도의 주말 효과 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.861-871
    • /
    • 2014
  • This study analyzes the characteristics of ozone weekend effect(OWE) in Busan. $O_3$ concentration on Sunday was over 10% higher than that on weekdays in all areas except for Kwangbokdong, Taejongdae, and Joadong. Such a difference was higher in the industrial area than in the residential area. $O_3$ generation was facilitated by the decrease in $NO_X$ emission on Sunday in VOC-limited regime where the VOC/$NO_X$ ratio is low. Low NO concentration in the Sunday morning decreased inhibition of $O_3$. NO-$O_3$ crossover time on Sunday was shorter than that on weekdays which in turn extended the accumulated duration of $O_3$. Future studies can include whether the entire Busan is VOCS-limited or the coastal area is VOCS-limited while the inland area is $NO_X$-limited.

A Study on the Comparison of Areas Near Gunsan according to the Revision of the National Air Pollutant Emissions (CAPSS) in 2020 (국가대기오염물질 배출량(CAPSS)의 2020년 산정 방법 개정에 따른 군산 인근지역 비교에 관한 연구)

  • Sang-Hun Park;Seong-Cheon Kim
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.190-200
    • /
    • 2023
  • Background: Gunsan has been constantly affected by pollutants generated by the Saemangeum development and the construction industry since the completion of the Saemangeum seawall on April 27, 2010. However, there are limitations to its study, such as taking into consideration weather conditions, geographical factors, and foreign inflows. Objectives: In this study, we compared the Existing-CAPSS emissions of Gunsan with Recalculated-CAPSS emissions data to analyze the differences in emissions characteristics by year (2016~2019). Methods: Using Existing data on CAPSS emissions (2016~2019) and Recalculated-CAPSS emissions (2016~2019) for Gunsan, which were Recalculated following the improvement of emissions calculations for 2020, we organized CO, NOX, SOX, PM10, VOCS, and NH3 emissions by substance and investigated the differences and characteristics of the Recalculated emissions by year. Results: For Re-CO and Re-PM10, the emission characteristics of CO were examined as energy industry combustion and PM10 emission characteristics were examined as ship cargo from non-road transportation sources, as ship leisure sources were excluded from non-road transportation source emissions. Conclusions: Comparing the emissions of Existing-CAPSS and Recalculated-CAPSS in Gunsan, the emissions of Recalculated-CAPSS by substance decreased by 39.76% for CO, 9.98% for PM10, 5.53% for VOCS, and 9.24% for NH3, while Re-NOX increased by 2.86% and Re-SOX increased by 1.97%. On the other hand, when comparing the emissions characteristics of Existing-CAPSS and Recalculated-CAPSS in Gunsan, Jeonju, and Iksan, the emission characteristics of Re-NOX, Re-SOX, Re-VOCS and Re-NH3 were similar to those of Ex-NOX, Ex-SOX, Ex-VOCS, and Ex-NH3. As such, Gunsan, Iksan, and Jeonju, showed differences in the comparison of different emission characteristics due to the geographical characteristics of the region (population, area, topography, weather factors) and the characteristics of the industrial complex (metal, petrochemical).

Concentrations of Water-soluble Particulate, Gaseous tons and Volatile Organic Compounds in the Ambient Air of Ulsan (울산 대기 중의 입자상, 기체상 물질의 수용성 이온 성분과 휘발성 유기화합물의 농도)

  • 나광삼;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.281-292
    • /
    • 1998
  • Ambient concentrations of gaseous, particulate phase ionic species, and VOCs (volatile organic compounds) were measured at two monitoring sites in the City of Ulsan during August 1997: one in industrial area and the other in downtown area. At each site, a three- stage filter pack sampler was used to collect fine particles and gaseous species, and air for VOC analysis was collected in stainless steel canisters. Concentrations of the ionic species at both sites were similar to each other. The VOC concentrations at the industrial site were approximately twice higher than those at the downtown site. This might be mainly due to the release of VOCs from the petrochemical industries. Daily variations of VOC concentrations at the industrial site were higher than that at the downtown site. This might be explained by the fact that emissions from industries were more irregular than those in downtown. The VOC concentrations in downtown were affected by both the local emissions and the emission from the petrochemical industries. The concentrations of selected hazardous organic components (HAPs) at the industrial site were similar to those of Yocheon industrial area but slightly higher than other cites and industrial areas, while those at the downtown site were comparable to those in other urban areas.

  • PDF

Numerical Study on the Process Analysis of Ozone Production due to Emissions Reduction over the Seoul Metropolitan Area (수도권 배출량 저감에 따른 오존 발생 과정 분석에 관한 수치연구)

  • Jeong, Yeo-Min;Lee, Soon-Hwan;Lee, Hwa-Woon;Jeon, Won-Bae
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.339-349
    • /
    • 2012
  • In order to clarify the impact of emissions reductions on the air quality over Metropolitan area of Korean Peninsula, several numerical experiment and analysis of integrated process rate(IPR) of ozone were carried out. Numerical models used in this study are WRF for the estimate the meteorological elements and CMAQ for assessment of ozone concentration. As result in the sensitive test of VOC/NOx reduction experiments, although VOC reduction tends to induce the different impact on the advection and photochemical reaction rate of ozone in urban area and rural area, the mechanism of ozone appeared to be more sensitive to the reduction of VOC than that of NOx over the metropolitan and its surround area. So the control of VOC emission inventories is an effective means to decrease the ozone concentrations around this area.

A Study on Reduction Effects of Air Pollutant Emissions by Automotive Fuel Standard Reinforcement (자동차연료 기준강화에 따른 대기오염물질 배출량 저감효과)

  • Lim, Cheol-Soo;Hong, Ji-Hyung;Kim, Jeong-Soo;Lee, Jong-Tae;Lim, Yun-Sung;Kim, Sang-Kyu;Jeon, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • The air pollutants from vehicle exhaust gas are affected by many factors including fuel qualities, engine and vehicle technologies, driving patterns. In particular, fuel qualities and after-treatment devices could directly affect the emission level of pollutants. The pollutant reduction characteristics that caused by enforced fuel quality standard were analyzed. Three types of test fuel were selected in accordance with Korean automotive fuel standard in 2006, 2009, 2012 and used for vehicle emission test in chassis dynamometer. European COPERT correction equation of fuel impact was considered as reference information to quantify the vehicle emission test results. The contribution rates of exhaust emission by COPERT correction equation showed that aromatic compounds and oxygen contents in gasoline fuel was most important. In case of diesel fuel, cetane index and polycyclic aromatic compounds accounted for the greater part. The exhaust emission effects by COPERT correction equation revealed that CO and VOC was increased 0.86%, 1.57% respectively in after 2009 gasoline when compared to before 2009 gasoline fuel. In case of light-duty diesel vehicle CO, VOC and PM were decreased in range of 3~7%. The result from this study could be provided for developing future fuel standards and be used to fundamental information for Korean clean air act.

Estimation of Contribution by Pollutant Source of VOCs in Industrial Complexes of Gwangju Using Receptor Model (PMF) (수용모델(PMF)을 이용한 광주산업단지 VOCs의 오염원별 기여도 추정)

  • Park, Jin-Hwan;Park, Byoung-Hoon;Kim, Seung-Ho;Yang, Yoon-Cheol;Lee, Ki-Won;Bae, Seok-Jin;Song, Hyeong-Myeong
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.219-234
    • /
    • 2021
  • Industrial emissions, mainly from industrial complexes, are important sources of ambient Volatile Organic Compounds (VOCs). Identification of the significant VOC sources from industrial complexes has practical significance for emission reduction. VOC samples were collected from July 2019 to June 2020. A Positive Matrix Factorization (PMF) receptor model was used to evaluate the VOC sources in the area. Four sources were identified by PMF analysis, including coating-1, coating-2, printing, and vehicle exhaust. The coating-1 source was revealed to have the highest contribution (41.5%), followed by coating-2 (23.9%), printing (23.1%), and vehicle exhaust (11.6%). The source showing the highest contribution was coating emissions, originating from the northwest to southwest of the sample site. It also relates to facilities that produce auto parts. The major components of VOC emissions from the coating facilities were toluene, m,p-xylene, ethylbenzene, o-xylene, and butyl acetate. Industrial emissions should be the top priority to meet the relevant control criteria, followed by vehicular emissions. This study provides a strategy for VOC source apportionment from an industrial complex, which is helpful in the development of targeted control strategies.

Evaluation Fugitive Emission Characteristics of Airbone VOCs from Different Source Categories (발생원 유형에 따른 공기 중 휘발성 유기화합물의 비산배출특성 평가)

  • 김배갑;백성옥;김미현;서영교;정복채
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.245-246
    • /
    • 2002
  • 일반적으로 대기 중 환경기준을 제어하기 위해서는 각 배출원에서 발생되는 오염물질의 배출강도를 정량적으로 평가 할 필요가 있다. 최근 들어, 휘발성 유기화합물질의 환경학적 중요성이 밝혀지면서 이 물질에 대한 대기 중 농도분포는 어떤 양상을 보이며 이에 영향을 미치는 각 배출원에서 비산배출(fugitive emission)되는 VOCs 종류와 농도에 대한 조사가 필요하게 되었다. VOCs 배출원은 모든 국가가 유사하겠으나 배출원별 VOCs의 배출기여도는 각국의 경제 및 산업구조의 특성에 따라 달라질 수 있다. (중략)

  • PDF